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Double/multiple descent recap

• Risk behavior of several commonly used prediction procedures such

as OLS linear regression, logistic regression, SVMs have been

recently studied under the proportional asymptotics setting.

• Proportional asymptotics refers to the setting where the number of

features p of the data scales proportionally to the number of

observations n of the data (i.e., p/n → γ ∈ (0,∞)).

• This should be contrasted with the traditional “low-dimensional”

setting where either p is fixed or p diverges but p/n → 0.
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Double/multiple descent recap

• A surprising phenomenon has been observed in the proportional

asymptotics regime both empirically and theoretically (under some

distributional assumptions).

• The risk of the common predictors first increases as p/n increases up

to some threshold and then decreases.

• There are two ways to view this:

• If p is thought of as fixed (large value), this implies that as sample

size increases the risk first decreases and then increases.

More data hurts.

• If n is thought of as fixed (large value), this implies that as the

number of features/covariates increase the risk first increases and

then decreases.

More features do not hurt.

• We will focus on the first interpretation: more data can hurt.
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Double/multiple descent in linear regression

Figure 1: Risk of the min-norm least squares under p/n ≈ γ [HMRT19]
3
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Motivation

• When the data comprises of i.i.d. observations, we expect that more

data will help in prediction or estimation.

• A procedure leading to worse risk as the number of observations

increases is not using the data properly and can be labeled

“sub-optimal.”

• It is, thus, surprising to note that several procedures optimal in the

“low-dimensional” settings are sub-optimal in the proportional

asymptotics regime.

• Such procedures can be readily improved by simply using less

number of observations than available for better risk behaviour.
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Motivation and the problem

Figure 2: Risk of the min-norm least squares under p/n ≈ γ.
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The problem

• Given a number of observations (n) and a number of features (p),

how do we know if a lesser number of observations would actually

yield a better risk?

• What is the best sample size to reduce the dataset in order to attain

the best possible risk?

Solution: cross-validation.
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Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio γ = p/n:

1. Risk estimation: construct a (dense grid of) aspect ratios ≥ γ by

using datasets of sizes smaller than n, and estimate risks on test set

2. Model selection: select aspect ratio that delivers the smallest

estimated risk and return the corresponding predictor

3. Risk monotonization: show that the risk profile of the resulting

procedure is asymptotically monotone in the aspect ratio

Method highlights:

• applicable to generic (e.g black-box) prediction methods

and common classification and regression loss functions

• model agnostic and requires minimal distributional assumptions

• works even with risk divergences at some aspect ratios
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Risk monotonization, illustration

If Rn represents the “risk” of a procedure at sample size n, then by risk

monotonization we mean a procedure with risk minm≤n Rm.

n

R
n

original risk

monotinized risk
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Split sample cross-validation

• Given data Dn of n i.i.d. observations and a prediction procedure f̃ ,

split Dn into training data Dtr with n(1− 1/ log n) observations and

test data Dte with n/ log n observations.

• Note that

lim
n

p

n
= lim

n

p

n(1− 1/ log n)
.

• For n1/2 ≤ k ≤ |Dtr|, obtain a predictor f̃k by training f̃ on a subset

of Dtr with k observations.

• If p/n converges to γ as n → ∞, then{
p

n1/2
,

p

n1/2 + 1
, . . . ,

p

|Dtr|

}
” → ” [γ,∞].

The set of aspect ratios for the predictors f̃k covers [γ,∞].

• Choose one out of f̃k , n
1/2 ≤ k ≤ |Dtr| using an estimate of

out-of-sample risk computed from Dte This is split sample

cross-validation. 9



Cross-validation risk estimate

• Traditionally, the risk of a predictor based on a test data is done via

average loss. For example, with squared error loss, the traditional

estimate of (prediction) risk of a predictor f̃k

R̂(f̃k) :=
1

|Dte|
∑
j∈Dte

(Yj − f̃k(Xj))
2.

• For a good performance simultaneously over O(n) predictors and

also to avoid strong tail assumptions on the loss, we also consider

the median-of-means estimator.

• With either the average or median-of-means estimator of risk, we

return the predictor f̂ := f̃k̂ where

k̂ := argmin
n1/2≤k≤|Dtr|

R̂(f̃k).

• k̂ represents the “best” sample size to use for the given number of

features in the dataset and f̃k̂ is what we call a zero-step predictor

that achieves risk monotonization. 10



Risk monotonization guarantee (informal statement)

Under the proportional asymptotics regime (p/n → γ), and a mild

assumption on the convergence of the prediction risk of f̂ trained on

datasets with a limiting aspect ratio converges, we show that

R(f̂ ) = R(f̃k̂) = inf
ζ∈[γ,∞]

Rdet(ζ; f̂ ) × (1 + op(1)).

This shows that the zero-step predictor has a monotone risk in terms of

the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the

data. This is unlike most results in overparametrized learning which

require stringent assumptions.

11



Risk monotonization (illustration)
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Figure 3: Risk monotonization of the minimum ℓ2-norm interpolator
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Classical one-step estimation

• Idea: start with any arbitrary linear predictor, compute “residuals”,

fit least squares on residuals, and add to the original predictor.

• If the initial predictor is f̃ (x) = x⊤β̂init, then the final predictor is:

X⊤β̃init︸ ︷︷ ︸
initial predictor

+ X⊤

(
1

n

n∑
i=1

XiX
⊤
i

)−1(
1

n

n∑
i=1

Xi (Yi − X⊤
i β̃init)

)
︸ ︷︷ ︸

one-step component

.

• It is well-known that in a low dimensional setting, starting with any

consistent estimator, the final estimator is n−1/2 consistent.

13



One-step estimation in high dimensions

• Question: can we perform one-step estimation in high dimensions?

• Issues:

1. The inverse of sample covariance matrix
∑n

i=1 XX
⊤
i /n need not exist.

2. In the overparameterized regime, the residuals Yi − X⊤
i β̂init are

identically or approximately zero for many common estimators.

• Solutions:

1. Use Moore-Penrose inverse in place of regular inverse

2. Split the training data, use a part to compute initial estimator β̂init,

and the other part to compute the residuals Yi − X⊤
i β̂init.

• In summary:

1. Start with a base predictor computed on subset of data.

2. Evaluate residuals on a different subset of data.

3. Fit min ℓ2-norm estimator on the residuals.

4. Add to the original predictor.

5. Cross-validate the split proportions.

14



One-step monotonization guarantee (informal)

Under the proportional asymptotics regime (p/n → γ), and a mild

assumption on the convergence of the prediction risk of the base

procedure trained on datasets with a limiting aspect ratio converges, we

show that the one-step achieves the risk of

inf
1/ζ1+1/ζ2≤1/γ

Rdet(ζ1, ζ2; f̃ ) × (1 + op(1)).

The above function is monotone with respect to the limiting aspect ratio.

Furthermore, the risk of the one-step procedure is no smaller than that

the zero-step procedure:

min
1/ζ1+1/ζ2≤1/γ

Rdet(ζ1, ζ2; f̃ ) ≤ min
1/ζ1≤1/γ

Rdet(ζ1; f̃ ),

15



One-step risk monotonization (illustration)
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Summary

• We have introduced a general-purpose method to potentially

improve any given predictor by monotonizing its risk in terms of n.

• The main idea is cross-validation based on test data, but with

splitting done so as to maintain the limiting aspect ratio.

• In the paper, we study both average as well as median-of-means

estimator of the prediction risk.

• Further, we provide additive and multiplicative oracle inequalities for

the cross-validated risk and can handle diverging risks.

• We introduced the zero-step prediction procedure with a tuning

parameter M that monotonizes the risk of a given predictor.

• For several commonly used predictors (min-ℓ1, ℓ2-norm LS), zero

step predictor with M > 1 is strictly better than that with M = 1.

• We also introduce a one-step prediction procedure inspired by

classical one-step estimator that improves on zero-step procedure. 17
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Supplement



Recall: simple cross-validation

• Given data Dn of n i.i.d. observations and a prediction procedure f̃ ,

split Dn into training data Dtr with n(1− 1/ log n) observations and

test data Dte with n/ log n observations.

• Note that

lim
n

p

n
= lim

n

p

n(1− 1/ log n)
.

• For n1/2 ≤ k ≤ |Dtr|, obtain a predictor f̃k by training f̃ on a subset

of Dtr with k observations.

• If p/n converges to γ as n → ∞, then{
p

n1/2
,

p

n1/2 + 1
, . . . ,

p

|Dtr|

}
” → ” [γ,∞].

The set of aspect ratios for the predictors f̃k covers [γ,∞].

• Now choose one out of f̃k , n
1/2 ≤ k ≤ |Dtr| using an estimate of

out-of-sample risk computed from Dte.



Recall: simple cross-validation

• Given data Dn of n i.i.d. observations and a prediction procedure f̃ ,

split Dn into training data Dtr with n(1− 1/ log n) observations and

test data Dte with n/ log n observations.

• Note that

lim
n

p

n
= lim

n

p

n(1− 1/ log n)
.

• For n1/2 ≤ k ≤ |Dtr|, obtain a predictor f̃k by training f̃ on a subset

of Dtr with k observations.

• Because there are
(|Dtr|

k

)
subsets of Dtr, one can alternatively

consider

f̃k(x) :=
1

M

M∑
j=1

f̃ (x ;Dk,j
tr ).

• This reduces variance of the predictor f̃k , while keeping its

expectation the same. Larger the M, better the predictor.



Risk monotonization (illustration)
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Figure 5: Risk monotonization of the min ℓ2-norm interpolator
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