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Double/multiple descent recap

e Risk behavior of several commonly used prediction procedures such
as OLS linear regression, logistic regression, SVMs have been
recently studied under the proportional asymptotics setting.

e Proportional asymptotics refers to the setting where the number of
features p of the data scales proportionally to the number of
observations n of the data (i.e., p/n — v € (0,0)).

e This should be contrasted with the traditional “low-dimensional”
setting where either p is fixed or p diverges but p/n — 0.
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Double/multiple descent recap

e A surprising phenomenon has been observed in the proportional
asymptotics regime both empirically and theoretically (under some
distributional assumptions).

e The risk of the common predictors first increases as p/n increases up
to some threshold and then decreases.

e There are two ways to view this:
e If pis thought of as fixed (large value), this implies that as sample
size increases the risk first decreases and then increases.
More data hurts.
e If nis thought of as fixed (large value), this implies that as the
number of features/covariates increase the risk first increases and
then decreases.

More features do not hurt.

e We will focus on the first interpretation: more data can hurt.



Double/multiple descent in linear regression

Isotropic features

2 4 — SNR=1
— SNR=233
—— SNR=366

o | — SsNR=5

Risk

0.1 0.2 0.5 1.0 20 5.0 10.0

Figure 1: Risk of the min-norm least squares under p/n =~ v [HMRT19]
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e When the data comprises of i.i.d. observations, we expect that more
data will help in prediction or estimation.

e A procedure leading to worse risk as the number of observations
increases is not using the data properly and can be labeled
“sub-optimal.”

e |t is, thus, surprising to note that several procedures optimal in the
“low-dimensional” settings are sub-optimal in the proportional
asymptotics regime.

e Such procedures can be readily improved by simply using less
number of observations than available for better risk behaviour.
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The problem

e Given a number of observations (n) and a number of features (p),
how do we know if a lesser number of observations would actually
yield a better risk?

e What is the best sample size to reduce the dataset in order to attain

the best possible risk?

Solution: cross-validation.
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Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio v = p/n:
1. Risk estimation: construct a (dense grid of) aspect ratios > ~ by
using datasets of sizes smaller than n, and estimate risks on test set

2. Model selection: select aspect ratio that delivers the smallest
estimated risk and return the corresponding predictor

3. Risk monotonization: show that the risk profile of the resulting
procedure is asymptotically monotone in the aspect ratio

Method highlights:
e applicable to generic (e.g black-box) prediction methods
and common classification and regression loss functions
e model agnostic and requires minimal distributional assumptions

e works even with risk divergences at some aspect ratios



Risk monotonization, illustration

If R, represents the “risk” of a procedure at sample size n, then by risk
monotonization we mean a procedure with risk min,, <, ..

original risk
monotinized risk




Split sample cross-validation

Given data D, of ni.i.d. observations and a prediction procedure £
split D, into training data Dy, with n(1 — 1/ log n) observations and
test data Dy with n/log n observations.

Note that

= lm —FP
n n(l—1/logn)

.p
lim — .
non

For n'/?2 < k < |D,|, obtain a predictor f by training f on a subset
of Dy, with k observations.

If p/n converges to v as n — oo, then

14 p 1% ™ x
— — o).
{n1/2’n1/2+1’ ’|Dtr} [v, o]

The set of aspect ratios for the predictors f, covers [, o9].

Choose one out of f, n/2 < k < |Dy,| using an estimate of
out-of-sample risk computed from Dy, This is split sample
cross-validation. 9



Cross-validation risk estimate

e Traditionally, the risk of a predictor based on a test data is done via
average loss. For example, with squared error loss, the traditional
estimate of (prediction) risk of a predictor f

RE) = 3 (%= AlX)P.

J€Dte

e For a good performance simultaneously over O(n) predictors and
also to avoid strong tail assumptions on the loss, we also consider
the median-of-means estimator.

e With either the average or median-of-means estimator of risk, we
return the predictor f := £ where

k = argmin  R(f).
nt/2<k<| Dy |
e k represents the “best” sample size to use for the given number of
features in the dataset and f; is what we call a zero-step predictor
that achieves risk monotonization. 10



Risk monotonization guarantee (informal statement)

Under the proportional asymptotics regime (p/n — +), and a mild
assumption on the convergence of the prediction risk of f trained on
datasets with a limiting aspect ratio converges, we show that

~

R(F)=R(F) = inf RIECGT) x (14 0p(2)).

CEly,00]

This shows that the zero-step predictor has a monotone risk in terms of
the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the
data. This is unlike most results in overparametrized learning which
require stringent assumptions.

11



Risk monotonization (illustration)
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Figure 3: Risk monotonization of the minimum #>-norm interpolator
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Risk monotonization (one-step)



Classical one-step estimation

e |dea: start with any arbitrary linear predictor, compute “residuals”,
fit least squares on residuals, and add to the original predictor.

e If the initial predictor is f(x) = xT Bt then the final predictor is:
1< 1
XT Dinit XT - X,XT - X,' \/, _ XT Dinit .

——

initial predictor

one-step component

e |t is well-known that in a low dimensional setting, starting with any

—-1/2

consistent estimator, the final estimator is n consistent.

13



One-step estimation in high dimensions

e Question: can we perform one-step estimation in high dimensions?

e Issues:

1. The inverse of sample covariance matrix >, XX;" /n need not exist.
2. In the overparameterized regime, the residuals Y; — X;" 3™ are

identically or approximately zero for many common estimators.

e Solutions:

1.
2.

Use Moore-Penrose inverse in place of regular inverse
Split the training data, use a part to compute initial estimator 5™
and the other part to compute the residuals Y; — X, g™,

e In summary:

N LR ORI

Start with a base predictor computed on subset of data.
Evaluate residuals on a different subset of data.

Fit min ¢2-norm estimator on the residuals.

Add to the original predictor.

Cross-validate the split proportions.

14



One-step monotonization guarantee (informal)

Under the proportional asymptotics regime (p/n — +), and a mild
assumption on the convergence of the prediction risk of the base
procedure trained on datasets with a limiting aspect ratio converges, we
show that the one-step achieves the risk of

i Rdet , ;’f‘-' % (14 os(1)).
1/C1+]I-/<2S1/'y (€1, G F) ( »(1))

The above function is monotone with respect to the limiting aspect ratio.

Furthermore, the risk of the one-step procedure is no smaller than that
the zero-step procedure:

min Rt (¢, ;? <  min Rdet ;F,
ey, B Cu&if) < min REGE)

15



One-step risk monotonization (illu
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16



Summary



17



e We have introduced a general-purpose method to potentially
improve any given predictor by monotonizing its risk in terms of n.

17



e We have introduced a general-purpose method to potentially
improve any given predictor by monotonizing its risk in terms of n.

e The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

17



e We have introduced a general-purpose method to potentially
improve any given predictor by monotonizing its risk in terms of n.

e The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

e In the paper, we study both average as well as median-of-means
estimator of the prediction risk.

17



e We have introduced a general-purpose method to potentially
improve any given predictor by monotonizing its risk in terms of n.

e The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

e In the paper, we study both average as well as median-of-means
estimator of the prediction risk.

e Further, we provide additive and multiplicative oracle inequalities for
the cross-validated risk and can handle diverging risks.

17
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e We have introduced a general-purpose method to potentially
improve any given predictor by monotonizing its risk in terms of n.

e The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

e In the paper, we study both average as well as median-of-means
estimator of the prediction risk.

e Further, we provide additive and multiplicative oracle inequalities for
the cross-validated risk and can handle diverging risks.

e We introduced the zero-step prediction procedure with a tuning
parameter M that monotonizes the risk of a given predictor.

e For several commonly used predictors (min-£1, f,-norm LS), zero
step predictor with M > 1 is strictly better than that with M = 1.

e We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure. 17



Thanks for listening!

Questions/comments/thoughts?



Supplement



Recall: simple cross-validation

e Given data D, of ni.i.d. observations and a prediction procedure £
split D, into training data Dy, with n(1 — 1/log n) observations and
test data Dy with n/log n observations.

e Note that

= lim—— P
n n(l—1/logn)

. p
lim — .
non

e For n'/2 < k < |Dy,|, obtain a predictor zi by training f on a subset

of Dy, with k observations.

e If p/n converges to v as n — oo, then

P P P " "
— — o0].
{n1/2’ nt/2417"77 7 |Dtr} [v, o]

The set of aspect ratios for the predictors f; covers [, ).

e Now choose one out of f, n*/? < k < |Dy,| using an estimate of
out-of-sample risk computed from Dy,.



Recall: simple cross-validation

Given data D, of ni.i.d. observations and a prediction procedure £
split D, into training data Dy, with n(1 — 1/ log n) observations and
test data Dy with n/log n observations.

Note that

= lim —FP
n n(l—1/logn)

i P
im — .
non

For n/2 < k < | Dy |, obtain a predictor fk by training f on a subset
of D;, with k observations.

Because there are (le“l) subsets of Dy, one can alternatively

consider

M
~ 1 - .
fi(x) = o E f(x; DEA).
Jj=1

This reduces variance of the predictor ?k while keeping its
expectation the same. Larger the M, better the predictor.



Risk monotonization (illustration)
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Figure 5: Risk monotonization of the min f>-norm interpolator
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