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This thesis studies transmission strategies for the downlink of a cloud radio-access net-

work, in which the base stations are connected to a centralized cloud-computing based

processor with digital backhaul links. We provide a system-level performance compari-

son of two fundamentally different strategies, namely the data-sharing strategy and the

compression strategy, that differ in the way the backhaul is utilized. It is observed that

the performance of both strategies depends crucially on the available backhaul capacity.

When the backhaul capacity is low, the data-sharing strategy performs better, while

the compression strategy is superior under moderate-to-high backhaul capacity. Using

insights from such a comparison, we propose a novel hybrid strategy, combining the

data-sharing and compression strategies, that allows for better control over the backhaul

capacity utilization. An optimization framework for the hybrid strategy is proposed.

Numerical evidence demonstrates the performance gain of the hybrid strategy.
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Chapter 1

Introduction

The next generation (5G) wireless networks are envisioned with an ultra-dense cellular

deployment in order to support the ever increasing demand for high-speed data [1]. As a

consequence, intercell interference is the main physical layer bottleneck in future cellular

networks. Multicell cooperation is a technique that allows neighboring base stations

(BSs) to cooperate with each other for joint precoding and joint processing of user data

for intercell interference mitigation [2]. This thesis considers a promising future cellular

architecture, the Cloud Radio-Access Network (C-RAN), as an enabling platform on

which BSs can cooperate for interference mitigation purposes

In the C-RAN architecture, the BSs are connected to centralized cloud-computing

based servers via high-speed digital backhaul (wireline or wireless) links. One of the

benefits of the C-RAN architecture is that it provides an ability for flexible allocation of

radio and computing resources across all the BSs managed by the same central processor

and a cost-effective path for upgrading the existing wireless infrastructure for mobile

service delivery [3]. But more importantly, it facilitates coordinated and cooperative

signal processing across the multiple BSs connected to the same central processor. Joint

encoding of user messages in the downlink and joint decoding of user signals in uplink

can be performed at the central processor. By enabling the implementation of network

1



Chapter 1. Introduction 2

Figure 1.1: Illustration of the downlink transmission in C-RAN.

multiple-input multiple-output (MIMO) or coordinated multi-point (CoMP) concepts

[4, 5], C-RAN has the potential to significantly improve the overall throughput of the

cellular network.

This thesis studies the downlink transmission in a C-RAN setting. In the downlink C-

RAN, as shown in Fig. 1.1, the user data originate from the centralized cloud server and

are destined for the mobile devices distributed throughout a geographical area, while the

BSs act as relays between the user terminals and the cloud. In this sense, the downlink

C-RAN can be modeled as a broadcast-relay channel. If the backhaul links between

the cloud processor and the BSs have infinite capacities, the capacity analysis for this

setting is straightforward, as the downlink C-RAN becomes a vector broadcast channel

and the standard network information theoretic results apply [6]. But the limitations on
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the practical implementation of the C-RAN architecture constrains the backhaul links to

have finite capacities. In this more realistic case, both the theoretical analysis and the

practical system design become much more involved. This thesis studies transmission

strategies for the downlink C-RAN with finite backhaul capacities.

There are two fundamentally different existing transmission strategies for the down-

link C-RAN, depending on whether the joint precoding operation is performed at the

central processor or at the individual BSs. First, this thesis asks the question of how

the limited backhaul capacities influence the achievable rates in each strategy, and com-

pares their system-level performance under practical network settings. Second, this thesis

proposes a novel hybrid transmission scheme, which allows for better utilization of the

finite-capacity backhaul, by combining these two strategies.

The interference mitigation capability of CRAN stems from its ability to jointly en-

code the user messages across multiple BSs. One way to enable such joint precoding is to

simply share each user’s message with multiple BSs over the backhaul links. This back-

haul transmission strategy, called the data-sharing strategy in this thesis, is analogous to

the decode-and-forward relaying strategy. As sharing of each user’s message across the

entire network would require excessively large amount of backhaul capacity, the practi-

cal implementation of data-sharing strategy often involves clustering, where each user

selects a subset of cooperating BSs and only those BSs in its cooperation cluster receive

its message.

As an alternative strategy, the joint precoding of user messages can also be performed

at the cloud server rather than at the individual BSs. In fact, one of the the original

motivations for C-RAN is to entirely shift the baseband processing from the BSs to

the central processor making BS units as simple as possible for easy deployments, up-

grades, and maintenance [3]. In this case, the precoded analog signals are compressed

and forwarded to the corresponding BSs over the finite-capacity backhaul links for direct

transmission by the BS antennas. This approach, called the compression strategy in this
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thesis, is akin to the compress-and-forward relaying strategy. The practical implementa-

tion of the compression strategy involves setting the appropriate quantization noise levels

under the limited backhaul capacity.

One of the key questions then is, if the functionalities of the BSs should be entirely

moved to the central processor, or if there is some benefit to having a functional split

between the central processor and the BSs. The main contribution of the thesis is to

answer this question.

In the data-sharing strategy the BSs receive clean copies of the user messages. Thus

the precise beamformed signals can be computed at the BSs. However, carrying raw user

data multiple times consumes high backhaul capacity, hence the cooperation cluster size

needs to be small under limited backhaul capacity. On the other hand, in the compression

strategy, since the beamformed signals are computed at the central processor, all the

available user data can be used to compute the beamformed signals. This allows the

possibility of a large cooperation cluster. But the final beamformed signals then need to

be compressed, which introduces quantization noises that limit the system performance.

Note that the feasibility of the joint cooperative signal processing depends crucially on the

availability of the channel state information (CSI) at the BSs and the central processor.

In terms of CSI, the data-sharing strategy requires less CSI than the compression strategy

due to smaller cluster size in the former.

Individually, both the data-sharing and compression strategies have been studied in

the context of C-RAN. However, a fair system-level comparison between the two strategies

under practical network settings has not yet been carried out in the literature due to

the challenges in solving the corresponding network optimization problems involving

user scheduling, beamforming, power control, along with the optimization of clusters

for the data-sharing strategy and the optimization of quantization noise levels for the

compression strategy. This thesis tackles such a system-level performance evaluation

and tries to find the conditions under which one strategy outperforms the other.
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The thesis then demonstrates that in a practical C-RAN setting with finite backhaul

capacity, instead of individual data-sharing or compression strategies, a hybrid strategy

that combines the two can improve the overall system performance. We propose an

approach where the central processor directly sends messages for some of the users to

the BSs, along with the compressed version of the precoded signals for rest of the users.

The intuition behind such an approach is that it is beneficial, in terms of backhaul

capacity utilization, to send clean messages for strong users while compressing rest of the

interference canceling signals. To quantify the benefit of this hybrid strategy, this thesis

proposes an optimization framework to select users for either direct data-sharing or for

compression, along with the network-wide beamforming design and the optimization of

quantization noise levels for the compressed signals.

1.1 Contributions

The overall contributions of this thesis are as follows.

First, the thesis provides a system-level performance comparison of the data-sharing

and compression strategies under finite backhaul capacity and practical network settings.

We consider the network-wide optimization frameworks for both strategies to maximize

the network utility. We assume explicit per-antenna power constraints and per-BS back-

haul constraints. The optimization methodology is based on an equivalence between the

weighted sum rate (WSR) maximization and the weighted minimization of sum mean

squared error (WMMSE). Specifically,

• We take into account loss due to practical modulation schemes in terms of gap to

capacity for both strategies. In addition, for the compression strategy, we introduce

a similar notion of gap to rate-distortion limit to account for quantization losses

due to non-ideal quantizers used in practice;

• We propose a novel algorithm for the joint optimization of the beamformers and
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quantization noise levels for the compression strategy based on the equivalence

between the WSR maximization and the WMMSE problem;

• We extend the existing algorithm for the joint optimization of the beamformers

and BS cooperation clusters for the data-sharing strategy in [7] to account for per-

antenna power constraints and the effect of practical modulation in terms of the

gap to capacity factor.

Second, we propose a novel hybrid transmission strategy that combines the data-

sharing and compression strategies that allows for better utilization of the limited back-

haul capacity. We propose an optimization framework to quantify the performance gains

due to the hybrid strategy. Specifically,

• We develop a unified optimization framework that jointly optimizes the network-

wide beamformers, user selection for either data-sharing or compression, and the

quantization noise levels for the compressed signals. This framework generalizes

the frameworks for both the data-sharing and compression strategies.

1.2 Related Work

As pointed before, information theoretically, the downlink of C-RAN is an instance of

a broadcast-relay network, where the BSs can be considered as relays. The capacity of

such network is unknown. A general coding strategy for the broadcast-relay network

is proposed in [8] based on a combination of Marton coding for the general broadcast

channel [9] and a coding scheme for deterministic linear relay networks [10]. However,

unlike in the uplink of the C-RAN, which is an instance of a multiple-access-relay channel,

where compress-and-forward strategies are known to be approximately optimal (in the

sense of constant gap to the cutset outer bound), such as quantize-map-forward scheme

of [10], or more generally noisy network coding [11], there are no approximate results
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known on the capacity region for the downlink C-RAN setup. The main difficulty lies

in the need for careful coordination among codewords for multiple user messages at

the central processor. In the uplink, there was no such need as the central processor

decodes all the compressed signals and the original user messages jointly. In the downlink,

the central processor can induce coordination among different codewords and the relays

potentially need to decode carefully chosen parts of the messages. Recently a new coding

scheme that combines Marton coding for single-hop broadcast channels [9] and partial

decode-forward for relay channels [12], called distributed decode-forward, is proposed for

broadcasting multiple messages over a general relay network in [13]. It is not yet clear

how to specialize the proposed scheme to the downlink C-RAN setup as the achievable

rate region in the proposed scheme involves auxiliary random variables which are difficult

to set properly.

If the backhaul capacity is infinite, downlink C-RAN with a Gaussian channel model

reduces to the well-known vector Gaussian broadcast channel, for which dirty paper cod-

ing (DPC) achieves the capacity region. For the finite backhaul capacity, however, DPC

and other linear precoding schemes cannot be applied directly. In [14], inner bounds for

the downlink transmission schemes with different levels of BS cooperation (infinite, lim-

ited or no BS cooperation) are studied. The effect of imperfect channel state information

(CSI) at the BSs and users is also taken into account.

For compression based strategies, a compressed version of DPC (CDPC) is intro-

duced in [15]. Different transmission strategies that require varying degrees of codebook

information (the encoding function information needed to employ DPC) at the BSs are

investigated for a simple Wyner type model. We get CDPC, when the BSs are oblivious

of any codebook information, where the central processor performs joint DPC, indepen-

dently compresses the codeword for each BS, and then sends the quantized codeword to

the corresponding BS. If some degree of codebook information is available at the BSs,

then data-sharing becomes possible. The conclusion of [15] is that oblivious BSs are
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sufficient in the regime of sufficiently large backhaul capacity for the Wyner model. Re-

cently [16] proposed a multivariate compression strategy across the signals of all the BSs,

instead of independent compression for each BS, to better control the effect of resulting

total quantization noises at the users by correlating the quantization noises for signals

of different BSs. An iterative algorithm achieving a stationary point for the problem of

maximizing sum rate with respect to the precoding matrix and the quantization noise

covariance matrix is proposed. Our work differs from [16], in that [16] optimizes the co-

variance matrices of transmit beamformers along with the quantization noise covariance

matrix using a rank approximation. In our optimization framework for the compression

strategy, we make a novel use of the equivalence between the WSR maximization and

the WMMSE problem instead, which does not require any approximation.

For data-sharing based strategies, various ways to selectively share the user messages

have been investigated in the literature [17, 18]. Information theoretic results for the

downlink network MIMO model using the data-sharing strategy have been reported in

[15,19,20], but most of these works are limited to certain simplified models. A modified

linear Wyner cellular model is studied in [15], and a two-BS, two-user setup is studied

in [19]. Our optimization framework for the data-sharing strategy is based on previous

work on sparse beamforming in [7]. We extend the algorithm in [7] to account for per-

antenna power constraints and the gap to capacity factor.

It is worth pointing out that a third transmission strategy, based on the compute

and forward (CoF) strategy for relay networks [21], is proposed in [22] nicknamed reverse

compute and forward (RCoF). The roles of BSs and users are reversed in RCoF compared

to CoF. Since users do not cooperate, an appropriate invertible precoding is performed to

the messages to be sent by the BSs at the central processor such that the effect of linear

combination can be undone at the user terminal so that each user obtains just its desired

message in the end. But, as with CoF, the performance of RCoF is quite sensitive to

the channel coefficients due to the non-integer penalty, since channel coefficients are not
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exactly matched to the computed integer linear combination. To eliminate this penalty,

based on the integer-forcing receiver idea [23], in [22], the effective channel matrix is forced

to be an integer matrix by a beamforming strategy named integer-forcing beamforming

(IFBF). In IFBF, the precoding matrix is chosen such that the effective channel matrix

is an integer matrix, then RCoF is applied to the effective channel matrix with no non-

integer penalty. While IFBF removes the non-integer penalty of RCoF, it introduces a

signal-to-noise-ratio (SNR) penalty due to the non-unitary precoding matrix. To send

the precoded symbols through the limited capacity backhaul links, the central processor

forwards the quantized versions to the BSs. The overall scheme is termed compressed

IFBF (CIFBF). The main challenge with such coding strategies based on lattice-coding

is that the underlying optimization problems often involve integer matrices, which are

very difficult to solve in practical networks.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 looks at the network-wide

optimization for the data-sharing and compression strategies. The optimization frame-

works for the two strategies are provided in separate sections and then the numerical

system-level performance comparison between the two is made. Chapter 3 proposes the

hybrid strategy that combines the data-sharing and compression strategies. We provide

a unifying optimization framework for the hybrid strategy that generalizes the data-

sharing and compression strategies. Joint optimization of network-wide beamformers,

user selection for data-sharing component, and quantization noise optimization for the

compressed signal is performed. We then provide system-level numerical evaluation of

the hybrid strategy to quantify its performance gains, over the individual data-sharing

and compression strategies. Finally, Chapter 4 concludes the thesis outlining the major

findings of our study. We also provide some directions for future work.
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1.4 Notation

The notation used in this thesis is as follows. Plain lower or upper case letters are used

to denote scalars, e.g., w, C. Bold face lower letters are used to denote vectors, e.g., w.

Bold face upper letters are used to denote matrices, e.g., H. An n-dimensional identity

matrix is denoted by either In×n, or I when the dimension is clear from the context. For

a scalar, Re{·} denotes its real part and | · | denotes its magnitude. For a vector, (·)T

denotes its transpose, || · ||p denotes its �p norm. For a matrix, (·)−1 denotes its inverse,

(·)H denotes its conjugate transpose (or just conjugate, in case of a scalar). For a random

variable, E [·] denotes its expected value. Calligraphy letter are used to denote sets, e.g.,

L. Letters C and R are used to denote the set of real and complex numbers respectively.



Chapter 2

Data-sharing versus Compression

Strategies

This chapter provides a system-level performance comparison of two fundamentally dif-

ferent transmission strategies, the data-sharing strategy and the compression strategy,

for the downlink of a C-RAN. The two strategies differ in the way the limited backhaul

is utilized. On one hand, in the data-sharing strategy, the central processor shares the

data of each user to a cluster of BSs which then computes the beamformed signals to be

transmitted. The backhaul is used to carry raw user data. On the other hand, in the

compression strategy, the central processor itself computes the beamformed signals to be

transmitted by each BS through capacity-limited backhaul links. The backhaul is used

to carry compressed beamformed signals.

Although these strategies have been individually studied in the literature, a fair com-

parison of the two schemes under practical network settings is challenging because of

the complexity in jointly optimizing user scheduling, beamforming, and power control

for system-level performance evaluation, along with the need to optimize cooperation

clusters for the data-sharing strategy and quantization noise levels for the compression

strategy. This chapter presents optimization frameworks to maximize the network utility

11
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for both strategies, while taking into account losses due to practical modulation in terms

of gap to capacity and due to practical quantization in terms of gap to rate-distortion

limit.

Among the family of network utility functions, we adopt the WSR utility. Both opti-

mization frameworks for the data-sharing strategy and the compression strategy exploit

the equivalence between the WSR maximization and the WMMSE problem. We point

out that, although we consider the WSR as the utility function, the proposed frame-

works can easily be extended to any utility function that holds an equivalence with the

WMMSE problem. A sufficient condition for any function to hold such equivalence is

provided in [24].

Our optimization framework for the data-sharing strategy builds upon [7]. We ex-

tend the framework in [7] to include the gap factor for practical modulation and consider

more general per-antenna power constraints. For the compression strategy, we consider

two models for quantization, depending on whether the codebooks used for compression

are kept fixed or are allowed to adapted, and propose a novel algorithm that uses the

equivalence between the WSR maximization and the WMMSE problem. We make ap-

propriate distinctions between the cases with single-antenna BSs and multi-antenna BSs,

depending on the feasibility of the framework in each of the cases with fixed or adaptive

codebooks.

The main conclusion of this chapter is that the compression-based strategy, even

with a simple fixed-rate uniform quantizer, outperforms the data-sharing strategy under

medium-to-high capacity backhauls. However, the data-sharing strategy outperforms

the compression strategy under low capacity backhauls primarily because of the large

quantization loss at low backhaul capacity with compression.

This chapter restricts attention to linear precoding strategies, but as mentioned be-

fore, possibilities exist for performing nonlinear precoding based on dirty-paper cod-

ing [15], and for using the lattice-coding strategy based on compute-and-forward [25] for
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Figure 2.1: Illustration of the C-RAN downlink system.

the downlink C-RAN.

2.1 System Model

Consider the downlink of a C-RAN, as shown in Fig. 2.1, comprising of L BSs equipped

with M antennas serving K users equipped with N antennas. All the BSs are connected

to a central processor with capacity-limited backhaul links1. The capacity of the backhaul

link connecting BS l to the central processor is denoted by Cl, l ∈ L = {1, . . . , L}. We

transmit a single independent data stream from the central processor to each user. The

user k’s information signal is denoted by sk, k ∈ K = {1, . . . , K} and it is assumed to

1We use the term backhaul, because the links carry digital data. These links are sometimes referred
to as fronthaul links in the C-RAN literature, especially when they carry compressed analog signals.
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be chosen independently from a complex Gaussian distribution with zero-mean and unit

variance. We assume that the central processor has access to the data and perfect CSI

for all the users in the network. The complex signal transmitted by antenna m at BS l is

denoted by xm
l , m ∈ M = {1, . . . ,M}, l ∈ L. We assume a per-antenna transmit power

constraint with maximum power budget denoted by Pm
l , i.e.,

E[|xm
l |2] ≤ Pm

l , l ∈ L,m ∈ M. (2.1)

A flat-fading channel model is assumed. Let xl ∈ C
M×1 = [x1

l , . . . , x
m
l ]

T denote the

vector signal transmitted by BS l and x ∈ C
LM×1 = [xT

1 , . . . ,x
T
L]

T be the aggregate signal

from all the BSs. The received signal at user k, yk ∈ C
N×1, is

yk = Hkx+ zk, (2.2)

where Hk ∈ C
N×LM = [H1,k, . . . ,HL,k] is the channel to user k from all the BSs,

Hl,k ∈ C
N×M being the channel response from M transmit antennas of BS l to N receive

antennas of user k, and zk is the additive complex Gaussian noise with zero-mean and

variance σ2 on all of its diagonals.

2.2 Data-sharing Strategy

In the data-sharing strategy, as shown in Fig. 2.2, a cluster of BSs locally form beam-

formers to cooperatively serve each user. The data for that user is replicated at all the

participating BSs in the cluster via the backhaul links. A crucial decision is to select an

appropriate cluster of BSs for each user for interference mitigation, while staying under

the limited backhaul capacity.
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Figure 2.2: Example of the data-sharing strategy for the downlink C-RAN.

2.2.1 Optimization Framework

Let wl,k ∈ C
M×1 = [w1

l,k, . . . , w
M
l,k]

T be the beamforming vector from BS l to user k

with wm
l,k denoting the beamforming coefficient from mth antenna of BS l to user k and

wk ∈ C
LM×1 = [wT

1,k, . . . ,w
T
L,k]

T be the aggregate network-wide beamformer to user k

from all the BSs. If user k is not cooperatively served by BS l, then wl,k = 0. This can

be equivalently represented by saying that ‖wl,k‖22 = 0, if BS l does not participate in

serving user k. The beamformed signal x to be transmitted by all the BSs can be written

as

x =
K∑
k=1

wksk. (2.3)

At user k, the signal-to-interference-plus-noise ratio (SINR) is

SINRk = wH
k H

H
k

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

)−1

Hkwk. (2.4)
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The information theoretical achievable rate for user k is related to SINR as Rk = log(1+

SINRk). However, this rate expression assumes Gaussian signaling, while in practice

QAM constellations are typically used for the Gaussian channel in the moderate and

high SINR regime. To achieve a given data rate, at a certain probability of error, we

need an SINR higher than what is suggested above. This extra amount of power is

usually captured by a so-called SNR gap, denoted here by Γm. Its value is approximately

independent of the size of the constellation for square QAM, and can be easily computed

as a function of the target probability of error [26]. For example, at Pe = 10−6, Γm = 9

dB. The use of error correcting codes may lower the value of Γm. Now with the SNR gap

taking into account, we can rewrite the achievable rate for user k as

Rk = log

⎛
⎜⎝1 +

wH
k H

H
k

(∑
j �=k Hkwjw

H
j H

H
k + σ2I

)−1

Hkwk

Γm

⎞
⎟⎠ . (2.5)

The optimization problem of finding the optimal set of BS clusters and beamformers for

the data-sharing scheme can now be formulated as a WSR maximization problem under

per-antenna power constraints and per-BS backhaul constraints as follows:

maximize
{wl,k}

K∑
k=1

αkRk (2.6a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (2.6b)

K∑
k=1

�
{‖wl,k‖22

}
Rk ≤ Cl, l ∈ L, (2.6c)

where αk denotes the priority weight associated with user k at the current user scheduling

time slot which can be updated according to proportional fairness criterion, for example.

The indicator function �
{‖wl,k‖22

}
in the constraint (2.6c) denotes if BS l participates in

beamforming to user k, and if so, the user rate Rk is included in the backhaul constraint

Cl. The constraint (2.6b) accounts for the per-antenna power constraint at antenna m
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of BS l. The beamforming coefficients are computed at the central processor, and are

assumed to be transmitted to the BSs without any error. We neglect the backhaul con-

sumption for transmitting the beamformers as the beamformers need to be transmitted

only once during each user scheduling time slot and compared with the backhaul needed

to send the data, it is a very small fraction. The above formulation considers joint design

of BS clustering, beamforming, and power control. Note that it also implicitly does joint

user scheduling. This can be seen from the fact that a user k is scheduled, i.e., Rk is

non-zero, if and only if its beamformer vector wk is non-zero. Thus the user scheduling is

implicitly jointly done along with BS clustering and beamforming optimization to satisfy

the per-antenna and per-BS backhaul constraints. The optimization problem is solved

repeatedly and the BS clusters are dynamically optimized in each time slot as the priority

weights are updated.

2.2.2 Optimization Methodology

The presence of the backhaul constraint (2.6c) makes the optimization problem chal-

lenging. In this paper, we follow the approximation suggested in [7] to first write the

indicator function as a l0 norm which is then approximated as a weighted l1 norm as

�
{‖wl,k‖22

}
=
∥∥‖wl,k‖22

∥∥
0
≈ βl,k ‖wl,k‖22 , (2.7)

where βl,k is a constant weight associated with BS l and user k and is updated iteratively

according to

βl,k =
1

‖wl,k‖22 + τ
, (2.8)
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for some regularization constant τ > 0 and ‖wl,k‖22 from the previous iteration. This

simplifies the constraint (2.6c) to

K∑
k=1

βl,k ‖wl,k‖22 Rk ≤ Cl, l ∈ L, (2.9)

which is equivalent to a generalized power constraint, if Rk is assumed fixed and heuristi-

cally chosen from the previous iteration in an iterative manner. The resulting optimiza-

tion problem then becomes:

maximize
{wl,k}

K∑
k=1

αkRk (2.10a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (2.10b)

K∑
k=1

βl,kR̂k ‖wl,k‖2 ≤ Cl, l ∈ L, (2.10c)

where R̂k is the rate from the previous iteration.

Even though the approximated problem (2.10) is still non-convex, it can formulated as

an equivalent WMMSE problem using the equivalence between the WSR maximization

and the WMMSE problem. The advantage of working with the WMMSE problem is that

the optimization variables can be split into groups such that with respect to each group

of variables, the optimization problem is convex, if other variables are fixed. Thus we can

use the block coordinate descent method to reach a stationary point of (2.10). [27] first

established the relationship between the WSR maximization and the WMMSE problem

for the MIMO broadcast channel. It is generalized to the MIMO interference channel

in [24] and the MIMO interference channel with partial cooperation in [28]. In the context

of C-RAN, the equivalence is used in [7]. The difference between the formulation (2.6)

and that in [7] is the gap factor Γm and per-antenna power constraints, instead of per-

BS power constraint. It is not difficult to verify that the equivalence between WSR
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optimization and WMMSE extends even for (2.10). We state the equivalence explicitly

below.

Proposition 2.2.1. Let uk ∈ C
N×1 denote the receive beamformer at user k and the

corresponding MSE defined as

ek = E
[∥∥uH

k yk − sk
∥∥2
2

]
(2.11)

= uH
k

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

)
+Hkwkw

H
k H

H
k

)
uk − 2Re

{
uH
k Hkwk

}
+ 1.

(2.12)

Then the WSR maximization problem (2.10) is equivalent to the following WMMSE prob-

lem

minimize
{wl,k},{uk},{ρk}

K∑
k=1

αk (ρkek − log ρk) (2.13a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (2.13b)

K∑
k=1

βl,kR̂k ‖wl,k‖2 ≤ Cl, l ∈ L (2.13c)

in the sense that for any stationary point ({w∗
l,k}, {u∗

k}, {ρ∗k}) of the WMMSE problem,

({w∗
l,k}) is a stationary point of (2.10) and vice versa, where ρk denotes the MSE weight

for user k.

Proof. We provide the proof in Appendix A.

It can be easily verified that the WMMSE problem (2.13) is convex with respect to

each of the individual optimization variables {wl,k}, {uk}, {ρk}. This allows the block

coordinate descent method to be applied iteratively over these variables. Specifically,
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• The optimal MSE weight ρk under fixed {wk} and {uk} is given by

ρk = e−1
k . (2.14)

• The optimal receive beamformer uk under fixed {wk} and {ρk} is given by

uk =

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

)
+Hkwkw

H
k H

H
k

)−1

Hkwk. (2.15)

• The optimal transmit beamformers {wk} under fixed {uk}, {ρk} and fixed {R̂k} can
be obtained by solving following quadratically constrained quadratic programming

(QCQP):

minimize
{wl,k}

K∑
k=1

wH
k Akwk − Re{bH

k wk} (2.16a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (2.16b)

K∑
k=1

βl,kR̂k ‖wl,k‖22 ≤ Cl, l ∈ L, (2.16c)

where {Ak} ∈ C
LM×LM and {bk} ∈ C

LM×1 are defined to be

Ak =
∑
j �=k

αjρjΓmH
H
j uju

H
j Hj + αkρkH

H
k uku

H
k Hk, (2.17)

bk = 2αkρkH
H
k uk. (2.18)

We summarize the overall algorithm for the optimization of the data-sharing strategy

in Algorithm 1.
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Algorithm 1 WSR maximization for the data-sharing strategy

Initialization: {βl,k}, {wk}, {R̂k};
Repeat:

1. For fixed {wk}, compute the MMSE receivers {uk} and the corresponding MSE
{ek} according to (2.15) and (2.12);

2. Update the MSE weights {ρk} according to (2.14);

3. For fixed {uk}, {ρk}, and {R̂k} in (2.16c), find the optimal transmit beamformers
{wl,k} by solving (2.16);

4. Update {βl,k} as in (2.8);

5. Compute the achievable rates {Rk} according to (2.5). Update R̂k = Rk, k ∈ K.

Until convergence

2.3 Compression Strategy

In the compression strategy, as shown in Fig. 2.3, the central processor computes the

beamformed analog signals to be transmitted by the BSs. These signals have to be

compressed before they can be forwarded to the corresponding BSs through the finite-

capacity backhaul links. The process of compression introduces quantization noises; the

quantization noise levels depend on the backhaul capacities.

2.3.1 Optimization Framework

In the data-sharing strategy, the beamformed signal is computed at the BSs. In the

compression strategy, the beamformed signal is computed at the central processor, then

compressed, sent over the backhaul links, and reproduced by the BSs. Let x̂l ∈ C
M×1 =

[x̂1
l , . . . , x̂

M
l ]T denote precoded signal computed at the central processor intended for BS

l and x̂ ∈ C
LM×1 = [x̂T

1 , . . . , x̂
T
L]

T be the aggregate signal intended for all the BSs.

Again let the beamforming vector from BS l to user k by wl,k ∈ C
M×1 = [w1

l,k, . . . , w
M
l,k]

T

with wm
l,k being the beamforming coefficient from mth antenna of BS l to user k and

wk ∈ C
LM×1 = [wT

1,k, . . . ,w
T
L,k]

T be the aggregate network-wide beamformer to user k
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Figure 2.3: Example of the compression strategy for the downlink CRAN.

from all the BSs. We can then write x̂ as

x̂ =
K∑
k=1

wksk. (2.19)

The analog signals x̂ are then compressed and forwarded to BSs. We model the quanti-

zation process for x̂ as

x = x̂+ e, (2.20)

where the quantization noise e is assumed to be complex Gaussian with covariance matrix

Q ∈ CLM×LM and independent of x̂. Under this model, the achievable rate for user k,

accounting for the SNR gap, is given by

Rk = log

⎛
⎜⎝1 +

wH
k H

H
k

(∑
j �=k Hkwjw

H
j H

H
k + σ2I+HkQHH

k

)−1

Hkwk

Γm

⎞
⎟⎠ . (2.21)
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We consider independent quantization at each antenna at all the BSs, in which case Q

is a diagonal matrix with diagonal entries qml . (Multivariate compression is also possible

and has been studied in [16].) Assuming an ideal vector quantizer, the quantization noise

level qml and the backhaul capacity Cm
l allocated to each antenna at each BS are related

as (from rate-distortion theory [29])

log

(
1 +

∑K
k=1 |wm

l,k|2
qml

)
≤ Cm

l . (2.22)

However, the quantizers used in practice for compression can be far from ideal. In order

to capture these losses, we introduce a notion of gap to rate-distortion limit. Follow-

ing [30], we note that the operational distortion, δ(R), achieved by virtually all practical

quantizers at high resolution follow the relation

δ(R) = Γqvar(X)2−R, (2.23)

where var(X) is the variance of the signal being quantized, R is the rate of quantizer,

and Γq is a constant that depends on the particular choice of quantizer. For example,

for a fixed-rate (uncoded) uniform scalar quantizer, Γq =
√
3π
2
, which is approximately

2.72. For a uniform scalar quantizer followed by variable-rate entropy coding, Γq = πe
6
,

which is approximately 1.42. Note that Γq = 1 corresponds to the distortion achievable

by the best possible vector quantization scheme. Accounting for this, we can rewrite the

relation above as

log

(
1 +

Γq

∑K
k=1 |wm

l,k|2
ql

)
≤ Cm

l . (2.24)

The quantization noise relation described by (2.24) assumes that individual BSs have

access to the quantization codebooks used at the central processor for compressing the

signals intended for all of their antennas. The quantization codebooks depend on the

rate of the quantizer, Cm
l , and the variance of the signal being compressed,

∑K
k=1 |wm

l,k|2.
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Since we are also designing the beamforming coefficients {wl,k} at each user scheduling

time slot, the variance of the signal being compressed can change at each user scheduling

iteration. Also the rate of the quantizer, Cm
l , used for compressing the signal of antenna

m at BS l, depends on the backhaul capacity allocated to antenna m of BS l. This

allocation can also potentially be changed. Thus, to achieve (2.24), the information

about the quantizantion codebooks used at the central procesor for all antennas of a BS

needs to be sent to that BS at the start of each user scheduling iteration.

In practice, however, it may not be feasible to convey all such relevant codebook

information from the central processor to each individual BS at each user scheduling

time slot. We consider below two optimization formulations, one that allows for adaptive

quantization codebooks, and other with fixed quantization codebooks, and the algorithms

to solve them.

2.3.2 Optimization Methodology

Adaptive Quantization

We refer to the situation when the quantization codebooks are allowed to be changed at

the central processor at each user scheduling time slot as adapative quantization. It is

adaptive in the sense that, depending on the active users and their priority weights, the

quantization codebooks are allowed to adapted. Recall that the quantization codebooks

depend on the rate of the quantizer and the variance of the signal being compressed.

In the case of single-antenna terminals, since the backhaul capacity per-antenna is fixed

(which is same the per-BS backhaul capacity), the rate of the quantizer for that BS is

fixed. In the case of multiple antennas, the rate of the quantizer used for an antenna at

a BS is not fixed, as we do not have per-antenna backhaul constraints. We can allocate

the quantization rates for different quantizers of different antennas so long as we meet

the per-BS backhaul constraint. If we consider such flexible allocation, this makes the

underlying optimization more difficult, as we have one more set of variables to optimize
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over. We first consider the case with single-antenna BSs with adaptive quantization,

where the rate of the quantizer is fixed (as each BS only has a single antenna), but the

variance of the signal to be compressed can change. For the case of multiple antennas

considered in the next section, we look at the case of fixed quantization where we fix

the rate of the quantizer for each of the antennas as well as the variance of the signals

compressed.

In this section, we assume a single antenna at the BSs and the user terminals. For

notational clarity, we drop the superscript m denoting the antenna index. The channel

vector to user k from all BSs in this case is denoted by a column vector hk ∈ C
L×1 =

[h1,k, . . . , hL,k]
T . The achievable rate Rk is thus given by (2.21) with Hk = hH

k , while the

quantization relation with adaptive coding is given by (2.24).

The design of the compression strategy can now be stated as a WSR maximization

problem over the transmit beamformers and the quantization noise levels as follows:

maximize
{wl,k},{ql}

K∑
k=1

αkRk (2.25a)

subject to
K∑
k=1

|wl,k|2 + ql ≤ Pl, l ∈ L (2.25b)

K∑
k=1

|wl,k|2 − 2Cl − 1

Γq

ql ≤ 0, l ∈ L. (2.25c)

The constraint (2.25c) is just a reformulation of (2.24), while the constraint (2.25b) is

the per-antenna power constraint at BS l.

Finding the globally optimal solution to (2.25) is challenging. An iterative approach

based on the majorize-minimization (MM) algorithm has been suggested in [16]. The

algorithm in [16] transforms wkw
H
k into a non-negative definite matrix variable Rk and

ignores the rank constraint on Rk in the optimization. In this thesis, we propose a novel

way to solve (2.25) by reformulating it as an equivalent WMMSE problem and then using

the block coordinate descent method between the groups of variables of the transmit
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beamformers {wk} and the quantization noise levels {ql}, the receive beamformers {uk},
and the MSE weights {ρk}. The algorithm can be shown to reach a stationary point of

(2.25). Below we state the explicit equivalence.

For a receive beamformer uk for user k, the corresponding MSE ek, as defined in (2.11),

is

ek = |uk|2
(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)
−2Re{uH

k h
H
k wk}+1. (2.26)

Now consider the following WMMSE optimization problem:

minimize
{wl,k},{ql},
{uk},{ρk}

K∑
k=1

αk (ρkek − log ρk) (2.27a)

subject to
K∑
k=1

|wl,k|2 + ql ≤ Pl, l ∈ L (2.27b)

K∑
k=1

|wl,k|2 − 2Cl − 1

Γq

ql ≤ 0, l ∈ L, (2.27c)

where ρk is the WSE weight for user k. The following holds true.

Proposition 2.3.1. The WSR maximization problem (2.25) is equivalent to the WMMSE

problem (2.27) in that for any stationary point ({w∗
l,k}, {u∗

k}, {ρ∗k}, {q∗l }) of the WMMSE

problem, ({w∗
l,k}, {q∗l }) is a stationary point of (2.25) and vice versa.

Proof. We relegate the proof to appendix B.

It is an easy exercise to verify that the WMMSE problem (2.27) is convex with respect

to each of the individual optimization variables {wl,k}, {uk}, {ρk}, {ql}. The individual

block coordinate descent iterations then are as done as follows.

• The optimal MSE weight ρk under fixed {wk} and {uk} is as given by (2.14)
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• The optimal receive beamformer uk under fixed {wk} and {ρk} is given by

uk =

(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)−1

hH
k wk. (2.28)

• The optimization of the transmit beamformers {wk} and the quantization noise

levels {ql} under fixed {uk} and {ρk} is solved via the following convex program:

minimize
{wl,k},{ql}

K∑
k=1

wH
k Akwk − Re{bH

k wk}+ Γmαkρk|uk|2hH
k Qhk (2.29a)

subject to
K∑
k=1

|wl,k|2 − 2Cl − 1

Γq

ql ≤ 0, l ∈ L (2.29b)

K∑
k=1

|wl,k|2 + ql ≤ Pl, l ∈ L, (2.29c)

where {Ak} and {bk} are defined to be

Ak =
∑
j �=k

Γmαjρj|uj|2hjh
H
j + αkρk|uk|2hkh

H
k , (2.30)

bk = 2αkρkukhk. (2.31)

We further observe that the convex optimization problem (2.29) has a particu-

lar structure that can be exploited. Observe that the two constraints (2.29b)

and (2.29c) provide a lower and an upper bound on {ql}, respectively. Since the

objective (2.29a) is monotonically decreasing in {ql}, we can replace the inequality

with equality in the constraint (2.29b) and substitute {ql} from (2.29b) into the

objective (2.29a) and the constraint (2.29c). This results in a QCQP problem in

only a single set of variables {wk}, which can be solved efficiently.

We summarize the overall algorithm to solve (2.25) in Algorithm 2.

As pointed before, for multiple antennas at the BSs, if we were to consider adaptive
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Algorithm 2 WSR maximization for the compression strategy with adapative quanti-
zation
Initialization: {wk}, {ql};
Repeat:

1. For fixed {wk}, {ql}, compute the MMSE receivers {uk} and the corresponding
MSE {ek} according to (2.28) and (2.26);

2. Update the MSE weights {ρk} according to (2.14);

3. For fixed {uk} and {ρk}, find the optimal transmit beamformers {wk} and quanti-
zation noise levels {ql} by solving the convex optimization problem (2.29);

Until convergence

quantization, the formulation above also needs to tackle the allocation of the available

backhaul capacity for different quantizers of different antennas at the same BS while

maintaining the per-BS backhaul constraint, since we do not have a per-antenna back-

haul constraint. Such an optimization problem needs to deal with the additional set

of optimization variables for the allocation of the backhaul capacities, which makes the

optimization problem more challenging. For the case of multi-antenna BSs, we focus on

the practical case of fixed quantization as discussed in the next section.

Fixed Quantization

In this section, we consider the quantization model when the quantization codebooks are

fixed at the central processor and at the BSs. The achievable rate is as given by (2.21).

To fix the codebook for the quantizer for antenna m of BS l, we assume that the range of

the quantizer is constrained within the power constraint for the antenna, Pm
l . Further,

since we have a backhaul constraint on each BS and not on each antenna, we allocate

uniform backhaul capacity for each antenna of a BS such that Cm
l = Cl

M
. With these

assumptions, the quantization relation (2.24) becomes

log

(
1 +

ΓqP
m
l

qml

)
≤ Cl

M
. (2.32)
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We can now formulate the WSR maximization problem over the transmit beamformers

and the quantization noise levels as:

maximize
{wl,k},{qml }

K∑
k=1

αkRk (2.33a)

subject to
K∑
k=1

|wm
l,k|2 + qml ≤ Pm

l , l ∈ L,m ∈ M (2.33b)

qml ≥ ΓqP
m
l

2
Cl
M − 1

, l ∈ L, (2.33c)

where the constraint (2.33c) is a reformulation of (2.32), and the constraint (2.33b) is

the per-antenna power constraint on antenna m at BS l.

Note that the above formulation extends easily, if one allows adaptive quantization for

the range of the quantizer by fixing the backhaul allocation, for example with uniform

backhaul allocation. The algorithm developed for the case of adapative quantization,

Algorithm 2, can be easily applied to the multi-antenna BSs in that case.

In order to solve the optimization problem (2.33), we first observe that the objective

(2.33a) is a decreasing function of qml . The constraint (2.33c) provides a lower bound on

qml , while the constraint (2.33b) provides an upper bound. Hence the constraint (2.33c)

will always be met with equality at a stationary point. Thus we can substitute the

value of qml from (2.33c) into the objective (2.33a) as well as the constraint (2.33b) and

eliminate the variables qml . This modifies the constraint (2.33b) into

K∑
k=1

|wm
l,k|2 ≤ Pm

l

(
1− Γq

2C
m
l − 1

)
, l ∈ L,m ∈ M. (2.34)

We then end up with a WSR maximization problem with modified per-antenna power

constraints, which is tackled by solving its equivalent WMMSE problem. The MSE for



Chapter 2. Data-sharing versus Compression Strategies 30

user k as defined in (2.11) is

ek = uH
k

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I+HkQHH

k

)
+Hkwkw

H
k H

H
k

)
uk−2Re

{
uH
k Hkwk

}
+1.

(2.35)

under the receiver uk. We solve the following equivalent WMMSE problem for (2.33)

with the modified constraint (2.34).

minimize
{wl,k},{uk},{ρk}

K∑
k=1

αk (ρkek − log ρk) (2.36a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l

(
1− Γq

2C
m
l − 1

)
, l ∈ L,m ∈ M. (2.36b)

We skip the formal statement of the equivalence and its proof as it can be seen as a

special case of the Proposition 2.2.1, by ignoring the constraint (2.10c). The WMMSE

problem (2.36a) is solved with block coordinate descent between {wl,k}, {uk}, and {ρk}
by solving the following individual optimization problems.

• The optimal MSE weight ρk under fixed {wk} and {uk} is given by (2.14).

• The optimal receive beamformer uk under fixed {wk} and {ρk} is given by

uk =

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I+HkQHH

k

)
+Hkwkw

H
k

)−1

HH
k wk. (2.37)

• The optimal transmit beamformers {wk} under fixed {uk} and {ρk} can be obtained

by solving the following QCQP problem:

minimize
{wl,k}

K∑
k=1

wH
k Akwk − Re{bH

k wk} (2.38a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l

(
1− Γq

2C
m
l − 1

)
, l ∈ L,m ∈ M, (2.38b)

where {Ak} and {bk} are as defined in (2.17) and (2.18) respectively.
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Cellular Hexagonal
Layout 7-cell wrapped-around

Channel bandwidth 10 MHz

Distance between cells 0.8 km

Number of users/cell 30

Number of macro-BSs/cell 1

Number of pico-BSs/cell 3

Max. Tx power at antenna/macro-BS 43 dBm

Max. Tx Power at antenna/pico-BS 30 dBm

Antenna gain 15 dBi

Background noise −169 dBm/Hz

Path loss from macro-BS to user 128.1 + 37.6 log10(d)

Path loss from pico-BS to user 140.7 + 36.7 log10(d)

Log-normal shadowing 8 dB

Rayleigh small scale fading 0 dB

SNR gap (Γm) 9 dB

Rate-distortion gap (Γq) 4.3 dB

Table 2.1: Simulation parameters for 7-cell wrapped-around two-tier heterogeneous net-
work.

The overall algorithm for solving (2.33) is summarized in Algorithm 3.

Algorithm 3 WSR maximization for the compression strategy with fixed quantization

Initialization: {wk};
Repeat:

1. For fixed {wk}, compute the MMSE receivers {uk} and the corresponding MSE
{ek} according to (2.37) and (2.35);

2. Update the MSE weights {ρk} according to (2.14);

3. For fixed {uk}, {ρk}, find the optimal transmit beamformers {wl,k} by solving
(2.38);

Until convergence

2.4 Performance Comparison

In this section, we numerically compare the performance of the data-sharing and com-

pression strategies. We consider a 7-cell wrapped-around two-tier heterogeneous network

with simulation parameters as listed in Table 2.1. Each cell is a regular hexagon with 1
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Figure 2.4: Illustration of the 7-cell wrapped around two-tier heterogeneous network with
30 users randomly placed in each cell.

macro-BS at the center and 3 pico-BSs equally separated in space. There are 30 users

randomly placed in each cell. A sample of BS and user locations within the network in

illustrated in Fig. 2.4. All the macro-BSs and pico-BSs are connected to a centralized

processor by capacity-limited backhaul links. We compare the performance of the two

strategies under varying backhaul capacities. The combined background noise and inter-

ference caused by two tiers of cells outside the 7-cells is estimated to be -150 dBm/Hz. We

assume an SNR gap of Γm = 9 dB (corresponding to uncoded QAM transmission) and a

gap to rate-distortion limit of Γq = 4.3 dB (corresponding to uncoded fixed-rate uniform

scalar quantizer). At each time slot, we solve the respective network optimization prob-

lems and update the weights in the WSR maximization according to the proportional
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Figure 2.5: Cumulative distribution function of user rates for the data-sharing and com-
pression strategies with single-antenna terminals and adaptive quantization.

fair criterion.

In the first set of simulations, we compare the performance of the data-sharing strat-

egy and the compression strategy with adaptive quantization and single transmit antenna

at both the macro-BSs and pico-BSs, and single receive antenna at the users. Fig. 2.5

shows the cumulative distribution of user rates under varying backhaul capacities for both

strategies. Plots for the compression strategy are shown in red color, while those for data

sharing strategy are shown in blue color. For reference, we also include the full coopera-

tion case with infinite backhaul capacity and the baseline scheme of no cooperation with

each user connected to the strongest BS.

When the backhaul capacity is low at 40 Mbps/macro-BS and 20 Mbps/pico-BS, the
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data-sharing strategy outperforms the compression strategy. The 50-percentile rate for

the data-sharing strategy is about 3 times that of the compression strategy. If we double

the backhaul capacity to 80 Mbps/macro-BS and 40 Mbps/pico-BS, the compression

strategy becomes comparable to the data-sharing strategy and both have about the same

50-percentile user rates. At this operating point, the sum backhaul capacity is about 6

times that of the average sum rate per cell. We also observe that the compression strategy

favours low rate users while the data-sharing strategy favours high rate users. A reason

for this is that the compression strategy under low backhaul capacity is limited by the

quantization noises which are about the same for all the BS signals resulting in more

uniform user rates.

We observe that with moderate-to-high backhaul capacity of 160 Mbps/macro-BS

and 80 Mbps/pico-BS, the compression strategy outperforms the data-sharing strategy

with the 50-percentile rate for the compression strategy more than 2.5 times than that of

data-sharing. Increasing the backhaul in this regime improves the compression strategy

drastically, while the data-sharing strategy sees only a moderate increase. This is because,

at low backhaul capacity, the performance of the compression strategy is limited by the

quantization noises. An increase in backhaul capacity reduces the quantization noise

levels exponentially, while a similar increase in the backhaul capacity does not buy as

much for the data-sharing strategy. Finally with a backhaul of 240 Mbps/macro-BS and

120 Mbps/pico-BS, the compression strategy performs close to the full cooperation limit,

while for the data-sharing strategy, backhaul capacities of 1200 Mbps/macro-BS and 600

Mbps/pico-BS are needed to get as close. This is because to match the full cooperation

limit, the data-sharing strategy needs large cluster size, leading to significantly higher

backhaul capacity.

In the second set of simulations, we compare the performance of the data-sharing

strategy and the compression strategy with fixed quantization when the terminals have

multiple antennas. We assume 4 antennas per macro-BS, 2 antennas per pico-BS, and
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Figure 2.6: Cumulative distribution functions of user rates for the data-sharing and
compression strategies with multi-antenna terminals and fixed quantization.

2 receive antennas for each user. Fig. 2.6 shows the cumulative distribution of user

rates with varying backhaul capacities for both strategies. For reference, the plot for

full cooperation with infinite backhaul capacity is also included. We observe similar

trends as in the case of single-antenna terminals and adaptive quantization. When the

backahul capacity is low at 160 Mbps/macro-BS and 40 Mbps/pico-BS (note that on

average per-antenna backhaul capacities are maintained at 40 Mbps/macro-BS antenna

and 20 Mbps/pico-BS antenna), the data-sharing strategy outperforms the compression

compression strategy. The 50-percentile rate for the data-sharing strategy is about 2.5

times that of the compression strategy.

If we double the backhaul capacity to 320 Mbps/macro-BS and 80 Mbps/pico-BS,
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we see that the compression strategy becomes comparable to the data-sharing strategy

and both have about the same 40-percentile user rates. In this regime the sum backhaul

capacity is about 5 times that of the average sum rate per cell. This is in the similar

range to what we observe in the single-antenna case. As the backhaul capacity is increased

further at 640 Mbps/macro-BS and 160 Mbps/pico-BS, the compression strategy starts

to significantly outperform the data-sharing strategy with the 50-percentile user rate is

about 80% more than that of the data-sharing strategy. With the backhaul capacity of

1280 Mbps/macro-BS and 320 Mbps/pico-BS, the compression strategy already achieves

the maximum achievable rates of the full cooperation. At this backhaul capacity the

quantization noises are small enough that they do not affect the user rates. At the same

backhaul capacity, the data-sharing strategy is still far behind that of full cooperation.

This is because the backhaul capacity is not high enough to allow for the backhaul

exchange required to maintain full cooperation.

It is important to note that the benefits from the compression strategy come at a cost

of high CSI requirements at the central processor. To understand the impact of CSI on

the data-sharing and compression strategies, we limit the amount of CSI available at the

central processor by only allowing CSI of the few strongest BSs for each user. We call

such a restriction as clustered CSI, when CSI of only a cluster of BSs around any user

is available. All the algorithms can be adapted when such clustered CSI is available for

each user.

Fig. 2.7 shows the cumulative distribution of user rates for both strategies when

the CSI is limited to only 7 strongest BSs for each user. We observe that the general

trend seen in the above two cases remain the same. At low backhaul capacity of 160

Mbps/maco-BS and 40 Mbps/pico-BS, the data-sharing strategy outperforms the com-

pression strategy, while at the high backhaul capacity of 640 Mbps/macro-BS and 160

Mbps/pico-BS, the compression strategy outperforms the data-sharing strategy. How-

ever, notice that, in this case the compression strategy is not as significantly better than
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Figure 2.7: Comparison of cumulative distribution functions of user rates for the data-
sharing and compression strategies with clustered CSI.

the data-sharing strategy. The 50-percentile user rate of the compression strategy is only

20% better than that of the data-sharing strategy, as compared with the case with full

CSI when the it was almost 80% better. We illustrate this point further in the next plot.

Finally, when the backhaul capacity is high at 1280 Mbps/macro-BS and 320 Mbps/pico-

BS, both the data-sharing and compression strategies saturate to the full cooperation user

rates with infinite backhaul capacity under limited CSI. For reference, the plot with full

cooperation with infinite backhaul capacity and full CSI is also included to highlight the

performance loss that is attributed to the lack of CSI.

In order to closely look at the how the lack of complete CSI affects the data-sharing

and compression strategies, we fix the backhaul capacity at 320 Mbps/macro-BS and 80

Mbps/pico-BS. This is the regime where the two strategies are comparable in the case
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Figure 2.8: Comparison of the cumulative distribution functions of user rates for the
data-sharing and compression strategies with full CSI and clustered CSI at the backahul
capacity of 320 Mbps/macro-BS and 80 Mbps/pico-BS.

with full CSI. Fig. 2.8 shows the cumulative distribution of user rates for both strategies

with full CSI and with clustered CSI at this fixed backhaul capacity. As is evident from

the plot, the compression strategy suffers more than the data-sharing strategy when only

partial CSI is available. The reason for this behavior is that the compression strategy

benefits from having the ability to fully cooperate at the central processor, but when

clustered CSI is available at the central processor, the cooperation cluster size at the

central processor becomes limited. The data-sharing strategy on the other hand does

not pay as much penalty because the cooperation cluster for the data-sharing strategy

is already small due to the backhaul capacity limitations. As a result, we also see that

the backhaul capacity at which the two strategies are comparable is higher when CSI is
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restricted, where it is at 400 Mbps/macro-BS and 100 Mbps/pico-BS, than the case with

full CSI, where it is at 320 Mbps/macro-BS and 80 Mbps/pico-BS.

2.5 Summary

This chapter compares two fundamentally different strategies, the data-sharing and the

compression strategy, for the downlink C-RAN under realistic network settings consider-

ing various practical aspects. We provide optimization frameworks for both strategies by

exploiting the equivalence between the WSR maximization and the WMMSE problem.

We then compare the performance of both strategies under varying backhaul capacities.

Our main conclusion is that the backhaul capacity constraint is crucial in deciding which

strategy to adopt. The compression strategy offers better user rates for moderate-to-high

backhaul capacities, due to its ability to have full cooperation before quantization. But

it suffers from high quantization loss at low backhaul capacity in which case it is better

to do data-sharing with limited cooperation cluster. Further, the compression strategy is

more sensitive to the availability of CSI than the data-sharing strategy, as in the former

the benefits stem from the ability to fully cooperate at the central processor, which is

affected adversely by the lack of CSI.
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Hybrid Strategy

In the data-sharing based cooperation scheme, the backhaul links are exclusively used to

carry user messages. The advantage of such an approach is that BSs get clean messages

which they can use for joint encoding. However, the backhaul capacity constraint limits

the cooperation cluster size for each user. In the compression based scheme, the precoding

operation is exclusively performed at the central processor. The main advantage of such

an approach is that, since the central processor has access to all the user data, it can form

a joint precoding vector using all the user messages, thus achieving full BS cooperation.

Additionally, the BSs can now be completely oblivious of the user codebooks as the

burden of preprocessing is shifted from the BSs to the central processor. However, since

the precoded signals are compressed, we pay a price in the form of quantization noises.

This paper proposes a hybrid compression and message-sharing strategy in which the

precoding operation is split between the central processor and the BSs. The rationale

is that as the desired precoded signal typically consists of both strong and weak users,

it may be beneficial to send clean messages for the strong users, rather than including

them as a part of the signal to be compressed. In so doing, the amplitude of the signal

that needs to be compressed can be lowered, and the required number of compression

bits reduced.

40
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Building on this intuition, this paper proposes an approach where a part of backhaul

capacity is used to send direct messages for some users (for whom the BSs are better

off receiving messages directly, instead of their contributions in the compressed precoded

signals) and the remaining backhaul capacity is used to carry the compressed signal that

combines the contributions from the rest of the users. Typically, each BS receives direct

messages for the strong users and compressed precoded signals combining messages of

the rest of the weak users in the network. Each BS then combines the direct messages

with the decompressed signal, and transmits the resulting precoded signal on its antenna.

Note that the appropriate beamforming coefficients are assumed to be available at both

the cloud processor and at the BSs.

We point out that a dirty-paper coding based scheme proposed in [15] also makes use

of the backhaul links to carry a combination of user message and the compressed version

of interfering signal from the neighboring BS in a simplified linear array model. But the

scheme of [15] is limited to the simplified linear array model; it also does not provide a

method to decide if and what user messages should be shared among the BSs and what

signals should be compressed.

3.1 Optimization Framework

In the hybrid strategy, as shown in Fig. 3.1, the central processor computes a part of

the beamformed analog signals to be transmitted by BSs. These signals are compressed

and sent over to BSs using a part of the backhaul capacity. For rest of the beamformed

signal, the central processor sends digital data of selected users to the BSs using the

remaining backhaul capacity. To simplify the description of the hybrid strategy, we

assume single-antenna at the BSs and the user terminals.

The idea is to introduce separate beamforming coefficients for the data-sharing and

compression parts. Let wc
k ∈ C

L×1 = [wc
1,k, . . . , w

c
L,k]

T be the beamformers for user k
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Figure 3.1: Example of the hybrid data-sharing and compression strategy for the down-
link C-RAN.

used to compute the beamformed signal that is going to be compressed at the central

processor. Let x̂c ∈ C
L×1 = [x̂c

1, . . . , x̂
c
L]

T denote the beamformed signals intended for all

the BSs computed at the central processor. These are given by

x̂c =
K∑
k=1

wc
ksk. (3.1)

The quantization process for x̂c is again modeled as

xc = x̂c + e, (3.2)

where e is the quantization noise with covariance Q ∈ C
L×L assumed to be Gaussian and

independent of x̂c. Assuming independent quantization at each BS, in which case Q is a

diagonal matrix with diagonal entries ql, the amount of backhaul capacity consumed by
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BS l, Cc
l , for the compression part of its total beamformed signal is given by

log

(
1 +

Γq

∑K
k=1 |wc

l,k|2
ql

)
≤ Cc

l . (3.3)

Similarly let wd
k ∈ C

L×1 = [wd
1,k, . . . , w

d
L,k]

T be the beamformers that are used for data-

sharing at the BSs and xd ∈ C
L×1 = [xd

1, . . . , x
d
L]

T denote the beamformed signals com-

puted at the BSs using the direct data given by

xd =
K∑
k=1

wd
ksk. (3.4)

If BS l does not receive direct data for user k, then wd
l,k = 0. The amount of backhaul

capacity, Cd
l , consumed by BS l for the data-sharing part is then given by

�
{|wd

l,k|2
}
Rk ≤ Cd

l , (3.5)

where the indicator function is used to indicate whether BS l participates in computing

the beamformed signal using the direct data for user k. If so, the backhaul needs to

support the user rate Rk. Note that we neglect the portion of the backhaul capacity that

would be needed to be communicate the beamforming coefficients at the start of each

user scheduling iteration as the it is negligible compared to the direct data communicated

within that user scheduling iteration. The final beamformed signal transmitted by BSs

to the users, x, is then the sum of compressed beamformed signals, xc, communicated

through the backhaul link and the direct beamformed signal, xd, computed at the BSs,

i.e.,

x = xc + xd. (3.6)
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The achievable rate for user k is then

Rk = log

⎛
⎝1 +

|hH
k

(
wc

k +wd
k

) |2
Γm

(∑
j �=k |hH

k

(
wc

j +wd
j

) |2 + σ2 + hH
k Qhk

)
⎞
⎠ . (3.7)

If we let wc
k +wd

k = wk, k ∈ K, the rate Rk can be simplified to

Rk = log

⎛
⎝1 +

|hH
k wk|2

Γm

(∑
j �=k |hH

k wj|2 + σ2 + hH
k Qhk

)
⎞
⎠ , (3.8)

where wk ∈ CL×1 can be thought of as the final combined beamformer for user k.

Now the WSR maximization problem for the hybrid strategy can then be formulated

as follows:

maximize
{wd

l,k},{wc
l,k},

{wl,k},{ql}

K∑
k=1

αkRk (3.9a)

subject to
K∑
k=1

|wl,k|2 + ql ≤ Pl, l ∈ L (3.9b)

K∑
k=1

�
{|wd

l,k|2
}
Rk + log

(
1 +

Γq

∑K
k=1 |wc

l,k|2
ql

)
≤ Cl, l ∈ L (3.9c)

wd
l,k + wc

l,k = wl,k, l ∈ L, k ∈ K. (3.9d)

Note that in the problem formulation (3.9) above, it may seem at first that, we

allow a more general hybrid strategy where a user k can both participate in direct data-

sharing to a BS l as well as be part of the signal compressed by that BS, if both the

beamforming coefficients wc
l,k and wd

l,k are non-zero. However, it can shown that, if Rk

in the constraint (3.9c) is fixed, indeed at most one of the two can be non-zero, i.e., a

user may only participate in data-sharing or compression, but not both. Intuitively this

is due to the fact that if a user’s data is shared at a particular BS, it is always better

to put all the beamforming power in the data-sharing beamformer, rather than splitting
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it with the compression beamformer, to avoid the quantization noise penalty associated

with the compression process. A more precise statement is given below.

Proposition 3.1.1. Any stationary point ({wl,k}, {wc
l,k}, {wd

l,k}) to the optimization prob-

lem (3.9) with fixed Rk in the constraint (3.9c) has either wc
l,k = 0, or wd

l,k = 0, or both

for all l ∈ L, k ∈ K.

Proof. The proof is relegated to Appendix C.

3.2 Optimization Methodology

The problem (3.9) involves joint optimization of beamforming vector for compression

and data-sharing signals ({wc
l,k, w

d
l,k}) (and as a consequence the combined beamformers

{wl,k}), the quantization noise levels {ql} for the compression signal, and the BS clustering

for data-sharing (and thus compression), i.e., the decision of which users should data-

shared and which users should be compressed for which BSs. In general, the problem is

hard as it combines the difficulties with both the individual data-sharing and compression

strategies bundled together.

Before we give the joint optimization procedure to solve (3.9), we consider a heuristic

procedure that separates the above optimization variables to illustrate where the ben-

efit in the hybrid strategy can come from. To this end, we first obtain the combined

network-wide beamformers {wl,k} without any backhaul constraints. Then assuming

only compression strategy, i.e., {wc
l,k = wl,k, w

d
l,k = 0}, the quantization noise levels {ql}

are optimized with these fixed beamformers with the backhaul constraints taken into

account. Next, in an iterative manner, we strategically explicitly select the most suitable

user for direct data-sharing with some BS, i.e. for some (BS, user) pair (l, k), we make

wc
l,k = 0, wd

l,k = wl,k, and then re-optimize the quantization noise levels for the remaining

compressed part using the modified backhaul capacity. We continue this procedure until

no additional users can benefit from data-sharing, instead of being included in the com-



Chapter 3. Hybrid Strategy 46

pressed signal. The overall procedure is summarized in Algorithm 4. We describe the

components in more detail below.

Algorithm 4 Heuristic design for the hybrid strategy

1. Design combined network-wide beamformers {wl,k}, ignoring the backhaul con-
straints, using, for example, the WMMSE approach or regularized zero-forcing;

2. Assuming only compression strategy, set wc
l,k = wl,k, w

d
l,k = 0, l ∈ L, k ∈ K and

optimize the quantization noise levels {ql} taking into account the backhaul con-
straints and obtain the user rates {Rk};

3. Use Algorithm 5 to select users for direct data-sharing.

The optimization of the combined network-wide beamformers can be done using the

WMMSE approach as discussed in Section 2.2 by ignoring the backhaul constraints. We

assume full per-antenna power could be utilized to design these beamformers. Then

assuming compression only strategy, optimization of the quantization noise levels with

fixed beamforming vectors and the given backhaul capacity constraints can be done by

utilizing the relation (3.2) and using the approach discussed in Section 2.3. Note that

since we started with beamformers with maximum per-antenna budget allowed, after

adding the quantization noise levels, some power constraints might be violated. Thus

the initial beamformers may have to be solved again by reducing the maximum power

allowed by the amount of the quantization noises. This process may be need to be

iterated until a feasible power allocation with the quantization noises is found after Step

2 of Algorithm 4. Finally we now improve upon the initial user rates obtained with

compression only strategy, by allowing the data for a subset of users to be sent to the

BSs directly through the backhaul links.

To select users for direct data transfer, we compare, for each user, the backhaul

capacity required for sending its message directly, with the reduction in backhaul in

compressing the rest of the signal if that user is dropped from compression. To illustrate

this more precisely, recall the amount of backhaul capacity needed to compress the pre-
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coded signal x̂c
l for BS l to within quantization noise level ql is approximately log

(
P̂l

ql

)
,

where P̂l = Γq

∑K
k=1 |wc

l,k|2. Let P̂l,k = Γq|wc
l,k|2. If we instead send the data for, say

user k, directly to BS l, the signal that needs to be compressed now has smaller power

P̂l− P̂l,k. So to compress it to within the same quantization noise level ql, approximately

log
(

P̂l−P̂l,k

ql

)
bits are needed instead. Now, the backhaul capacity required to send the

data of user k to BS l is just its achievable rate, namely, Rk. Thus, data-sharing is

beneficial for user k on BS l whenever Rk is less than the saving in the quantization bits,

or equivalently

log

(
P̂l

P̂l − P̂l,k

)
−Rk > 0. (3.10)

This criterion is used to select users for data-sharing. Note that we keep the combined

beamforming coefficient for the pair the same, and just move the value from compression

beamformer to data-sharing beamformer, i.e., we make wd
l,k = wl,k, w

c
l,k = 0. Once a

user is selected for message sharing, the quantization noise levels for the compressed part

are re-optimized with the modified backhaul capacity. Note that the modified backhaul

capacity constraint depends on the rate of the selected user, which is a function of the

quantization noise levels to be optimized. Hence, we need to iteratively optimize the

quantization noise levels assuming fixed rate for that user from the previous iteration,

then update the rates, and continue until the rates converge. Note also that the new

quantization noise levels obtained also affect the power constraints. However, such effects

are small and can be neglected. Algorithm 5 summarizes the user selection procedure

for data-sharing based on the criterion (3.10). We use a greedy approach to look for the

user which can provide the best improvement in backhaul utilization, then continue the

process until no more users would result in further improvement.

Joint Optimization

In this section, we describe the joint optimization methodology to solve the problem

(3.9). The main source of difficulty is the constraint (3.9c). The first term is the indicator
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Algorithm 5 User selection for data-sharing for the heuristic design

Set nk = 0, k ∈ K; set Ctemp = C;

Set gl,k = log
(

P̂l

P̂l−P̂l,k

)
−Rk, l ∈ L, k ∈ K;

Set g = maxl,k{gl,k};
while g > 0 do

Set (l̂, k̂) = argmax gl,k for message sharing;

Set P̂l̂ = P̂l̂ − P̂l̂,k̂; P̂l̂,k̂ = 0; nk = nk + 1;
repeat

Set C = Ctemp −
∑K

k=1 nkRk, and optimize quantization noise levels {ql};
Update user rates Rk;

until user rates converge

Set gl,k = log
(

P̂l

P̂l−P̂l,k

)
−Rk, l ∈ L, k ∈ K;

Set g = maxl,k{gl,k};
end while

function accounting for backhaul consumption due to direct data-sharing, along with the

user rate Rk that is also part of the objective function. The second term with the log

function in the compression part is a non-convex function of the variables ({wc
l,k}, {ql}).

For the indicator function, as before we approximate it as a weighted l1 norm as

�
{|wd

l,k|2
}
=
∥∥|wd

l,k|2
∥∥
0
≈ βd

l,k|wd
l,k|2, (3.11)

where βd
l,k is a constant weight associated with BS l and user k and is updated iteratively

in an outer loop according to

βd
l,k =

1

|wd
l,k|2 + τ

, (3.12)

for some regularization constant τ > 0 and |wd
l,k|2 from the previous iteration. Similarly,

Rk in the constraint (3.9c) is kept fixed from the previous iteration, denoted by R̂k, and

is updated in the same outer loop. This simplifies the constraint (3.9c) to

K∑
k=1

βd
l,kR̂k|wd

l,k|2 + log

(
1 +

Γq

∑K
k=1 |wc

l,k|2
ql

)
≤ Cl, l ∈ L. (3.13)
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Next, we rewrite the log function in the above constraint (3.13) into sum of two terms

as follows:

K∑
k=1

βd
l,kR̂k|wd

l,k|2 + log

(
Γq

K∑
k=1

|wc
l,k|2 + ql

)
− log (ql) ≤ Cl, l ∈ L. (3.14)

Thus we need to solve the optimization problem (3.9c) with the constraint (3.9c) modified

as (3.14). In this formulation, in the constraint (3.14), − log(ql) is a convex function of

{ql}, but log
(
Γq

∑K
k=1 |wc

l,k|2 + ql

)
is a non-convex function of ({wl,k}, {ql}). Additionally

the objective function (3.9a) is a non-convex function of ({wl,k}, {ql}). In order to solve

the optimization problem (3.9c) with the modified constraint (3.14), we use the iterative

successive convex approximation method by linearizing the non-convex part in both the

objective and the constraint in an inner loop. First, we transform the objective into a

suitable form, by utilizing the relationship between the achievable rate and the MSE.

The MSE for user k is defined as

ek = |uk|2
(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)

− 2 Re{uH
k h

H
k wk}+ 1.

(3.15)

under a receive beamformer uk. The rate Rk can then be written as

Rk = max
uk

log
(
e−1
k

)
. (3.16)

Second, to deal with the non-convexity of the log function in the transformed objective

function (3.16) and the modified constraint (3.14), we find the appropriate tight convex

upper bounds and successively update them. We make use of the following result.

Lemma 3.2.1. For any positive x, x0 ∈ R, log x ≤ log x0 +
1
x0
x− 1, with equality if and

only if x = x0.

We make successive convex approximations to log (ek) and log
(
Γq

∑K
k=1 |wc

l,k|2 + ql

)
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as follows.

log (ek) ≤ − log (ρk) + ρkek − 1, (3.17)

where

ρk = e−1
k , (3.18)

with ek as defined in (3.15), and ({wl,k}, {uk}) taken from the previous iteration in an

iterative manner in the inner loop. Similarly

log

(
Γq

K∑
k=1

|wc
l,k|2 + ql

)
≤ − log (γl) + γl

(
Γq

K∑
k=1

|wc
l,k|2 + ql

)
− 1, (3.19)

where

γl =

(
Γq

K∑
k=1

|wc
l,k|2 + ql

)−1

, (3.20)

with ({wc
l,k}, {ql}) taken from previous iteration in the inner loop.

Note the similarity of the update (3.18), in the convex upper bound (3.17) for the

objective function, to the MSE weight update in Chapter 2 (e.g., (2.14)) used in the

iterative algorithm used to solve the equivalent WMMSE problem. The two are in fact

related. Another way of looking at the the iterative algorithm for the equivalent WMMSE

problem is exactly what we have done above for the objective function. We successively

upper bound the log function in the rate Rk after writing it as a function of the transmit

and receive beamformers as in (3.16), and then update the convex upper bound in suc-

cessive block updates in the transmit and receive beamformers. The MSE weights are

the multiplying factors in the convex approximations at each step.

Thus, in the end, we iteratively solve the following programs with alternating block

updates in the inner loop for fixed βl,k and R̂k, and then update βl,k according to (3.12)

and R̂k as the modified Rk in the outer loop, as discussed when simplifying the original

constraint (3.9c) to (3.13).
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• The optimal receive beamformer uk under fixed {wk,w
c
k,w

d
k} and {ql} is given by

uk =

(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)−1

hH
k wk. (3.21)

• Under fixed {uk}, the optimal transmit beamformers {wk,w
c
k,w

d
k} and the optimal

quantization noise levels {ql} are obtained by solving the following convex program:

minimize
{wd

l,k},{wc
l,k},

{wl,k},{ql}

K∑
k=1

−αkρkek (3.22a)

subject to
K∑
k=1

|wl,k|2 + ql ≤ Pl, l ∈ L (3.22b)

K∑
k=1

βc
l,kR̂k|wd

l,k|2 + γlΓq

K∑
k=1

|wc
l,k|2 + γlql − log(ql) ≤ C ′

l , l ∈ L

(3.22c)

wd
l,k + wc

l,k = wl,k, l ∈ L, k ∈ K. (3.22d)

where C ′
l = Cl + log (γl) + 1.

The overall algorithm for the joint optimization of the problem (3.9) for the hybrid

strategy is summarized in Algorithm 6.

Note that the optimization framework and methodology developed in the previous

sections can be easily extended to the case with multiple antennas at the BSs and the

user terminals, but the main challenge is the computational complexity of the resulting

algorithm. We leave the work on developing a low complexity algorithm for the case of

multi-antenna terminals for future.
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Algorithm 6 WSR maximization for the hybrid strategy

Initialization: {wk,w
c
k,w

d
k}, {ql}, {βd

l,k}, {R̂k};
Repeat:

1. Repeat:

(a) For fixed {wk,w
c
k,w

d
k}, {ql}, compute the optimal receivers {uk} according to

(3.21) and the corresponding MSE {ek} according to (3.15);

(b) Update the weights {ρk} according to (3.18);

(c) Update the weights {γl} according (3.20), for fixed {wc
k}, {ql};

(d) For fixed {uk}, {ρk}, and {R̂k} in (3.22c), find the optimal transmit beam-
formers {wk,w

c
k,w

d
k} by solving (3.22);

Until convergence

2. Update {βl,k} as in (3.12);

3. Compute the achievable rates {Rk} according to (3.8). Update R̂k = RK , k ∈ K.

Until convergence

3.3 Numerical Evaluation

We first consider the a 7-cell wrapped around two-tier heterogeneous network considered

in Section 2.4. Each of the terminals is equipped with a single antenna. We compare

the hybrid strategy designed with the joint optimization done by Algorithm 6, with the

data-sharing and compression strategies, optimized with explicit per-antenna and per-BS

backhaul constraints using Algorithm 1 and Algorithm 2 respectively.

The Fig. 3.2 shows the average sum rate as a function of total backhaul capacities

across the 7-cell network for the three strategies. For low backhaul capacity, we observe

that the data-sharing performs better than the compression strategy. In this case, the

hybrid performs just as good. We observe that almost all the users in the final beamformer

for the hybrid strategy are data-shared. The reason why hybrid is slightly worse than

the data-sharing, even though the data-sharing optimization framework is a special case

of the hybrid optimization framework, is because of the log factor in the constraint

(3.9c). The quantization noises do not exactly go down to zero because of the numerical
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Figure 3.2: Comparison of the hybrid strategy with the data-sharing and compression
strategies.

issues. For moderate backhaul capacity, the data-sharing and compression strategies are

comparable. This is the regime where hybrid strategy has some potential to provide

benefits by having some users participate in data-sharing and rest in the compression.

When the backhaual capacity is high, the compression strategy starts to outperform the

data-sharing strategy. The hybrid strategy shows some improvement in this regime and

the gains tend diminish as we increase the backhaul even further as the rates saturate

to the maximum sum rate of the system. Thus overall we see that the hybrid strategy

achieves the best of the two strategies under low and high backhaul capacities, and when

the backhaul capacities are moderate, there is some benefit from the hybrid design.

For second set of simulations, we present the simulation results showing benefits of
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Figure 3.3: Comparison of cumulative distribution functions of user rates for the data-
sharing, compression, and hybrid strategies.

the hybrid strategy done with the heuristic design. For simplicity, we first consider

a homogenous 7-cell network with 15 users randomly located in each cell. Users are

scheduled in a round-robin fashion with one active user scheduled per cell at any given

time. The BS-to-BS distance is set at 0.8km, and the noise power spectral density

is −162dBm/Hz. The channels from the BSs to the users are generated according to a

distance-dependent path-loss model PL(dB) = 128.1+37.1 log 10(d) with 8dB log-normal

shadowing and a Rayleigh fading component, where d is the distance between the BS to

the user in km. Perfect channel estimation is assumed, and the CSI is made available to

all the BSs and to the centralized processor. A total bandwidth of 10 MHz is assumed.

For algorithmic tractability for designing beamformers for data-sharing part and op-
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timization of quantization noise levels for compression part, a sum power constraint and

a sum backhaul constraint over 7 BSs is adopted for this comparison. The reason for

such network simplification is that in the heuristic strategy, once a user is selected for

data-sharing, its rate is subtracted from the backhaul capacity based on the current user

rates and the quantization noises are re-optimized until the rates converge, it is difficult

maintain the constraints satisfied in this iterative heuristic process. The average power

spectral density at each BS antenna is maintained at -27dBm/Hz. For comparison pur-

poses, for the data-sharing strategy, we fix the cooperation cluster size for each user,

picking the strongest BSs according to channel strength, and use the WMMSE approach

of Section 2.2 for designing the beamformers. The backhaul capacity consumed is calcu-

lated once the user rates are determined. For the compression strategy, the first two steps

of Algorithm 4 are performed. The hybrid strategy is done using the heuristic design

according to Algorithm 4.

Fig. 3.3 shows the cumulative distribution function of the user rates for the three

schemes. In the simulation, weighted sum rate maximization is used as the optimization

objective with weights updated according to proportional fairness criterion. It can be

seen that both the compression strategy and the hybrid strategy significantly outperform

the data-sharing scheme at this backhaul capacity. This is partly also because, for the

data-sharing strategy, we fix the cooperation cluster. In particular, the hybrid scheme

with 350Mbps backhaul achieves about the same user rates as the data-sharing scheme

with 862Mbps, which represents a saving in backhaul capacity by about 60%. Further,

the hybrid scheme is also seen to outperform the compression strategy, improving the

rate of the 50th percentile user by about 10% at the same backhaul capacity. Thus

we see that the hybrid strategy has some potential to provide gains over the individual

strategies under moderate backhaul capacity.
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3.4 Summary

In this chapter, we propose a hybrid strategy that combines compression-based signaling

and data-sharing. Such an approach gives better control the utilization of the back-

haul capacity. We propose an optimization framework that generalizes the individual

data-sharing and compression strategies, and jointly optimizes the beamformers, user

selection for the data-sharing and compression components, and the quantization noise

levels for the compressed signals. We then numerically compare the performance of the

hybrid strategy with the individual data-sharing and compression strategies. Our main

conclusion is that when the backhaul capacity is low, it is better to only do pure data-

sharing, and when the backhaul capacity is high, it is preferable to do pure compression.

But when the backhaul capacity is moderate, there is some scope for doing the hybrid

combination of the two.
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Conclusion

C-RAN has emerged as a promising solution for the next generation wireless cellular

networks due to its potential to mitigate intercell interference by means of joint coop-

erative signal processing at the central processor. The main challenge to the realization

of the gains promised by the C-RAN architecture, however, hinges on the effective use

of the backhaul links, which in practice are often capacity-limited. This thesis studies

different transmission strategies for the downlink C-RAN with limited backhaul capacity,

and investigates how the limited backhaul capacity affects the design and system-level

performance of these strategies.

First, we compare two fundamentally different strategies, the compression strategy,

which is the standard solution for C-RAN, and the data-sharing strategy, which is the

traditional implementation in most cellular systems. Our main conclusion is that back-

haul capacity constraint is crucial in deciding which strategy to adopt for the downlink

C-RAN. If the available backhaul capacity is medium-to-high, the compression strategy

outperforms the data-sharing strategy, even with a simple fixed-rate uniform scalar quan-

tizer, due to the possibiilty to have large cooperation cluster at the central processor,

whereas using data-sharing, the cluster size is limited by the backhaul capacity. How-

ever, if the available backhaul capacity is low, the data sharing strategy outperforms the

57
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compression strategy. Under low backhaul capacity the quantization noises introduced

in the compression strategy dominate the interference, in which case it is better to just

share the data directly with a limited set of BSs rather than to compress. When we also

take into account the CSI bottleneck in the network, the performance of the compression

strategy suffers more than the data-sharing strategy. This is because, the gain in the

compression strategy stems from the possibility to form large cooperation clusters at the

central processor, which is affected more compared to the data-sharing strategy, which

already has a smaller cluster size due to the limited backhaul capacity.

Next, we propose to combine the data-sharing and compression strategies into a

hybrid scheme that can benefit from the advantages of both strategies. Such hybrid

combination results in flexibility in terms of backhaul utilization. The optimization

framework proposed for the hybrid strategy generalizes both individual strategies. When

the backhaul capacity is low, the hybrid strategy reduces to primarily all data-sharing and

when the backhaul capacity is high, it reduces to almost all compression. But when the

backhaul capacity is moderate, we observe that the system performance can be improved

by having the data for some of the users transmitted directly to the BSs and rest of the

users compressed using the remaining backhaul capacity. Having the flexibility to switch

between data-sharing and compression depending on the available backhaul capacity at

different BSs is especially useful in the future dense cellular networks with different tiers

of BSs, with different levels of backhaul capacities.

4.1 Future Work

In the compression strategy considered in this thesis, we study the quantization model

where the central processor performs independent quantization of the signals intended

for each antenna at each BS. There is also a possibility of doing joint compression for

the signals intended for different antennas of the same BSs. Further, as proposed in [16],
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it is also possible to do multivariate compression to introduce correlation among the

quantization noises of different BSs. Such correlation helps by potentially lowering the

total quantization noises at the end user after going through the channel between the

BSs and the user. It would be interesting to see how the comparison between data-

sharing and compression is affected by these quantization models. The main challenge

in designing algorithm with such models is the computational complexity. For example,

for the multivariate compression in [16], mere evaluation of the quantization rate region

grows exponentially with the number of BSs. It would be beneficial to look for ways to

reduce this complexity by an alternate rate region characterization.

Although we looked at the effect of partial CSI, in terms of clustered CSI, on the

performance of different strategies, it would be interesting to look at the tradeoff between

conveying good partial CSI or approximate full CSI. One way to consider such a tradeoff

would be account for CSI transfer in the backhaul capacity usage. Apart from CSI, the

feasibility of joint cooperative signal processing also depends crucially upon the ability of

the BSs to precisely synchronize with each other. How imperfect synchronization affects

the performance is also a question of practical importance for the implementation of

different cooperative strategies considered in this thesis.

Finally, on a theoretical front, it is of interest to provide a foundation to the trans-

mission strategies considered so far for the downlink C-RAN. In that regard, the first

step would be to attempt to characterize the approximate capacity of the downlink C-

RAN setup. A future direction would be to try to specialize the achievable rate region of

the recently proposed distributed decode-forward scheme of [13] to the downlink C-RAN

setup with a good choice of auxiliary random variables.
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Appendix A

Proof of Proposition 2.2.1

First we show that the WSR maximization problem (2.10) and the WMMSE problem

(2.13) have the same global solutions. To show this, first observe that in the WMMSE

problem, the optimization variables {uk} and {ρk} are unconstrained. Thus by first order

optimality conditions, we can easily show that

u�
k =

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

)
+Hkwkw

H
k H

H
k

)−1

HH
k wk, k ∈ K (A.1)

ρ�k = e−1
k , k ∈ K (A.2)

as fixing other variables, the objective is a convex function of the variable {uk} and {ρk}.
Thus substituting {u�

k} and {ρ�k} in the optimization problem (2.13), we get the following

equivalent problem:

maximize
wl,k

K∑
k=1

αk log
(
e−1
k

)
(A.3a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (A.3b)

K∑
k=1

βl,kR̂k ‖wl,k‖2 ≤ Cl, l ∈ L. (A.3c)

61



Appendix A. Proof of Proposition 2.2.1 62

By comparing the optimization problem (A.3) with the WSR maximization problem

(2.10), all it remains is to show that log
(
e−1
k

)
is same as Rk, k ∈ K, which we show

below.

By substituting the value of u�
k into ek and simplifying, we get

ek = 1−wH
k H

H
k

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

)
+Hkwkw

H
k H

H
k

)−1

Hkwk, k ∈ K.

(A.4)

Now we apply the Woodbury matrix identity to get

e−1
k = 1 +wH

k H
H
k

(
Γm

(∑
j �=k

Hkwjw
H
j H

H
k + σ2I

))−1

Hkwk, k ∈ K, (A.5)

which is exactly the (1 + SINRk) from (2.4). Hence we see that the two optimization

problems (2.10) and (2.13) have the same global solution.

Now we show that the two optimization problems also have the same set of stationary

points by equating the KKT conditions for the two problems.

Note that, since the optimization problem (2.13) is unconstrained in the variables

{uk} and {ρk}, and the objective function is convex in each of these variables when

other variables are fixed, for any stationary point ({w�
k}, {u�

k}, {ρ�k}) of problem (2.13),

the values of stationary points ({u�
k}, {ρ�k}) are as given by (A.1) and (A.2) respectively.

Observe that the constraint set for both problems are the same. Hence, it is sufficient to

only check the first order optimality conditions. Now writing the respective Lagrangian

functions of both the problems and taking their partial derivatives with respect to {wk},
we get

∂LWSR

∂wk

= −
K∑
k=1

αk
∂Rk

∂wk

+
∂
(∑

l λ
m
l

(∑K
k=1 |wm

l,k|2 − Pm
l

))
∂wk

+
∂
(∑

l μl

(∑
k β

l
kR̂k‖wl

k‖22 − Cl

))
∂wk

= 0,

(A.6)
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∂LWWMSE

∂wk

=
K∑
k=1

ρk
∂ek
∂wk

+
∂
(∑

l λ
m
l

(∑K
k=1 |wm

l,k|2 − Pm
l

))
∂wk

+
∂
(∑

l μl

(∑
k β

l
kR̂k‖wl

k‖22 − Cl

))
∂wk

= 0,

(A.7)

where λm
l ∈ R, μl ∈ R, l ∈ L,m ∈ M denote the dual variables associated with the per-

antenna power constraints and per-BS backhaul constraints respectively. The minus sign

in the first term of (A.6) results after writing the original problem (2.10) as a minimization

problem. Using the fact that {u�
k} is given by (A.1) and thus Rk is log(e−1

k ), as proved

above, we can re-write the partial derivative (A.6) as

∂LWSR

∂wk

=
K∑
k=1

αk

ek

∂ek
∂wk

+
∂
(∑

l λ
m
l

(∑K
k=1 |wm

l,k|2 − Pm
l

))
∂wk

+
∂
(∑

l μl

(∑
k β

l
kR̂k‖wl

k‖22 − Cl

))
∂wk

= 0.

(A.8)

Since ρ�k = e−1
k , k ∈ K, we see that for any stationary point ({w�

k}{u�
k}, {ρ�k}) of (2.13)

which is a solution to (A.7), the point ({w�
k}) also satisfies (A.6), and vice versa. Hence

the problems (2.13) and (2.10) are equivalent in the sense of stationary points.
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Proof of Proposition 2.3.1

The proof follows along the same lines as that of the proof for the Proposition 2.2.1

in Appendix A. The main difference is the presence of the new set of variables ({ql}),
corresponding to quantization noise levels. As we see below, all relations hold even with

these new variables. First we show that the WSR maximization problem (2.25) and

the WMMSE problem (2.27) have the same global solutions. By first order optimality

conditions, we can easily show that

u�
k =

(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)−1

hH
k wk (B.1)

ρ�k = e−1
k , k ∈ K. (B.2)
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Substituting {u�
k} and {ρ�k} in the optimization problem (2.27), we get the following

equivalent problem:

maximize
wl,k

K∑
k=1

αk log
(
e−1
k

)
(B.3a)

subject to
K∑
k=1

|wm
l,k|2 ≤ Pm

l , l ∈ L,m ∈ M (B.3b)

K∑
k=1

βl,kR̂k ‖wl,k‖2 ≤ Cl, l ∈ L. (B.3c)

Below we verify that log
(
e−1
k

)
is the same as Rk, k ∈ K.

By substituting the value of u�
k into ek and simplifying, we get

ek = 1−
(
Γm

(∑
j �=k

|hH
k wj|2 + σ2 + hH

k Qhk

)
+ |hH

k wk|2
)−1

|hH
k wk|2, k ∈ K. (B.4)

Applying the Woodbury matrix identity, after simplification we get

e−1
k = 1 +

|hH
k wk|2

Γm

(∑
j �=k |hH

k wj|2 + σ2 + hH
k Qhk

) , k ∈ K, (B.5)

which is exactly the term inside the log expression for rate Rk in (2.21). Hence we see

that the two optimization problems (2.25) and (2.27) have the same global solution.

Now we show that the two problems also have the same set of stationary points by

equating their KKT conditions. Since the constraints set is same for both problems, we

only need to check the first order optimality conditions.

Partial derivatives of the Lagrangian functions of both problems with respect to {wk}
and {ql} are as follows:

∂LWSR

∂wk

= −
K∑
k=1

αk
∂Rk

∂wk

+
∂
(∑

l λl

(∑K
k=1 |wl,k|2 − Pl

))
∂wk

+
∂
(∑

l μl

(∑K
k=1 |wl,k|2 − 2Cl−1

Γq
ql

))
∂wk

= 0.

(B.6)
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∂LWSR

∂ql
= −

K∑
k=1

αk
∂Rk

∂ql
+
∂
(∑

l λl

(∑K
k=1 |wl,k|2 − Pl

))
∂ql

+
∂
(∑

l μl

(∑K
k=1 |wl,k|2 − 2Cl−1

Γq
ql

))
∂ql

= 0.

(B.7)

∂LWWMSE

∂wk

=
K∑
k=1

ρk
∂ek
∂wk

+
∂
(∑

l λl

(∑K
k=1 |wl,k|2 − Pl

))
∂wk

+
∂
(∑

l μl

(∑K
k=1 |wl,k|2 − 2Cl−1

Γq
ql

))
∂wk

= 0.

(B.8)

∂LWWMSE

∂ql
=

K∑
k=1

ρk
∂ek
∂ql

+
∂
(∑

l λl

(∑K
k=1 |wl,k|2 − Pl

))
∂ql

+
∂
(∑

l μl

(∑K
k=1 |wl,k|2 − 2Cl−1

Γq
ql

))
∂ql

= 0.

(B.9)

Here λl ∈ R, μl ∈ R, l ∈ L denote the dual variables associated with the per-antenna

power constraints and per-BS backhaul constraints respectively. As done in Appendix

A, it is easy to verify that the above equations for the problem (2.25) are same as that

for the problem (2.27), by noticing that Rk is log(e−1
k ) under {u�

k} and ρ�k = e−1
k , k ∈ K.

Thus for any stationary point ({w�
k}, {ql}, {u�

k}, {ρ�k}) of (2.13) which is a solution to

(B.8) and (B.9), the point ({w�
k}, {ql}) also satisfies (B.6) and (B.7), and vice versa.

Hence the problems (2.25) and (2.27) are equivalent in the sense of stationary points.



Appendix C

Proof of Proposition 3.1.1

We prove the proposition using proof by contradiction.

We assume that, contrary to the claim, there is at least one pair of BS l and user

k such that the corresponding beamforming coeffient for both the data-sharing and the

compression are non-zero, i.e., there is a pair (l, k) of BS and user with compression

beamforming coefficient wc
l,k = c and data-sharing beamforming coefficient wd

l,k such that

|c|2 �= 0 and |d|2 �= 0. Note that both c and d are complex numbers. We now prove that

we can always produce another feasible point that has strictly better objective value and

thus the assumed solution can not be globally optimal. Additionally, we can also produce

a feasible point very close to the assumed solution that gives a strictly better objective

value and thus the assumed solution can not be a stationary point of the optimization

problem as well. Below we give the new feasible points that contradict the assumption.

To contradict the global optimality, the new point that has strictly better objective

value has wc
l,k = 0 and wd

l,k = c + d. First, with the new point, the total beamforming

coefficient for the BS l and user k is still the same, wl,k = wc
l,k + wd

l,k = c + d. Thus the

total beamforming constraints (3.22d) and the per-antenna power constraints (3.22b)

remain unchanged. For the constraint (3.9c) for BS l, since the indicator in first term

that accounts for the data-sharing backhaul was non-zero before (since |d|2 �= 0) and Rk
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is assumed to be fixed, the backhaul contribution from that term can not increase. While

in the second term in the constraint (3.9c) that accounts for compression backhaul, the

the value of
∑K

k=1 |wc
l,k|2 is now decreased by |c|2. Thus the new point along with the old

{ql} is feasible. Further, in the rate Rk given by (3.7) the signal power (the numerator)

and the interference (first term in the denominator) remain the same. Observe that the

rate is a strictly decreasing function of {ql}. With the previous ql and new (wc
l,k, w

d
l,k),

there is still some slack in the constraint (3.9c) because of the reduction in the numerator

of the second term accounting for compression backhaul capacity. Hence we can further

decrease ql, still satisfy the constraint, and get strictly better value for the objective

function. Note that the increased rates do not change other constraints as the rate Rk in

the constraints (3.9c) is assumed to be fixed. Now to produce a new point that contradicts

the stationarity, we take wc
l,k = c− ε and wd

l,k = d+ ε, where ε is a small complex number

such that |c− ε|2 < |c|2. It is easy to show that such ε exists. The rest of the argument

follows along the same lines as above for the global optimality, by first showing that new

point is feasible, and then showing that it can result in a strictly better objective value

by lowering the value of ql.
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